Introduction to MapReduce

Jacqueline Chame
CS503 Spring 2014

Slides based on:

research.google.com/pubs/archive/36249.pdf
MapReduce

• Programming model and implementation developed at Google for processing and generating large datasets

• Many real world applications can be expressed in this model

• Parallelism: same computation performed at different cpus on different pieces of input dataset

• Programs are automatically parallelized and executed on large cluster of machines
Motivation

- Before MapReduce, Google developers implemented hundreds of special-purpose computations to process large amounts of data
 - mostly simple computations
 - input data so large that it must be distributed across hundreds of thousands of machines
 - developers had to figure out how to parallelize computation, distribute data, deal with hardware failures, ...

- MapReduce: abstraction that allows programmers to write simple computations while hiding the details of:
 - parallelization
 - data distribution
 - load balancing
 - fault tolerance
MapReduce Programming Model

• Inspired by the map and reduce primitives of functional programming languages such as Lisp
 • map: takes as input a function and a sequence of values and applies the function to each value in the sequence
 • reduce: takes as input a sequence of values and combines all values using a binary operator

* but not equivalent!
MapReduce Programming Model

- Computation:
 - takes a set of input <key, value> pairs and produces a set of output <key, value> pairs

- map (written by user)
 - takes a input <key, value> pair
 - produces a set of intermediate <key, value> pairs

- MapReduce library
 - groups all intermediate values associated with same intermediate key I
 - sort intermediate values by key

- reduce (written by user)
 - takes as input an intermediate key I and a set of values for that key (<key, v1, v2, ..., vn>)
 - merges values together to form a smaller set of values
 - typically produces one output value
MapReduce execution model

map(k:v) \rightarrow (k':v')

reduce(k':v'[]) \rightarrow (v'')

map

reduce

input

output

group (k':v')s by k'

run-time system/
MapReduce library
Example: Word Count

- Count the number of occurrences of a word in a large collection of documents:

  ```java
  map(String key, String value):
      // key: document name
      // value: document contents
      for each word w in value:
          EmitIntermediate (w, "1");

  reduce(String key, Iterator values):
      // key: a word
      // values: a list of counts
      int result = 0;
      for each v in values:
          result += ParseInt(v);
      Emit(AsString(result));
  ```

- User also writes code to fill in a MapReduce specification object with
 - names of input and output files
 - optional tuning parameters

- User code is linked with the MapReduce library
Execution example

The quick brown fox jumps over the lazy fox

input (splits)

map

shuffle and sort (MapReduce library)

reduce
Word count code

```cpp
#include "mapreduce/mapreduce.h"

// User's map function
class WordCounter : public Mapper {
public:
    virtual void Map(const MapInput& input) {
        const string& text = input.value();
        const int n = text.size();
        for (int i = 0; i < n; ) {
            // Skip past leading whitespace
            while ((i < n) && isspace(text[i]))
                i++;
            // Find word end
            int start = i;
            while ((i < n) && !isspace(text[i]))
                i++;
            if (start < i)
                Emit(text.substr(start, i-start), "1");
        }
    }
};
REGISTER_MAPPER(WordCounter);

// User's reduce function
class Adder : public Reducer {
    virtual void Reduce(ReduceInput* input) {
        // Iterate over all entries with the same
        // key and add the values
        int64 value = 0;
        while (!input->done()){
            value += StringToInt(input->value());
            input->NextValue();
        }
        // Emit sum for input->key()
        Emit(IntToString(value));
    }
};
REGISTER_REDUCTER(Adder);

int main(int argc, char** argv) {
    ParseCommandLineFlags(argc, argv);
    MapReduceSpecification spec;
    // Store list of input files into "spec"
    for (int i = 1; i < argc; i++) {
        MapReduceInput* input = spec.add_input();
        input->set_format("text");
        input->set_filepattern(argv[i]);
        input->set_mapper_class("WordCounter");
    }
    // Specify the output files:
    // /gfs/test/freq-00000-of-00100
    // /gfs/test/freq-00001-of-00100
    // ...
    MapReduceOutput* out = spec.output();
    out->set_filebase("/gfs/test/freq");
    out->set_num_tasks(100);
    out->set_format("text");
    out->set_reducer_class("Adder");
    // Optional: do partial sums within map tasks
    // to save network bandwidth
    out->set_combiner_class("Adder");
    // Tuning parameters: use at most 2000 machines
    // and 100 MB of memory per task
    spec.set_machines(2000);
    spec.set_map_megabytes(100);
    spec.set_reduce_megabytes(100);
    // Now run it
    MapReduceResult result;
    if (!MapReduce(spec, &result)) abort();
    // Done: 'result' structure contains info about
    // counters, time taken, number of machines etc.
    return 0;
}
```
More examples

- Distributed **grep**
 - map: emits a line if it matches a supplied pattern
 - reduce: identity function (copies intermediate data to output)

- Count of URL access frequency:
 - map: processes logs of web page requests and emits `<URL, 1>`
 - reduce: adds together all values for same URL and emits `<URL, total_count>` pair

- Reverse Web-Link Graph
 - map: emits `<target, source>` pairs for each link to a target URL found in a page named source.
 - reduce: concatenates the list of all source URLs associated with a given target URL and emits `<target, list(source)>`
MapReduce implementation targeted to execution environment

- Google:
 - Large clusters of commodity PCs connected by Ethernet
 - A cluster has hundreds of thousands of machines: machine failures are common
 - Storage: inexpensive disks attached directly to individual machines. In-house distributed file system
 - Jobs (set of tasks) mapped by scheduler to available machines within a cluster

- Different implementations depend on environment
Execution

MapReduce library splits input data into a set of M pieces

MapReduce library starts copies of user program

user program

fork

master

fork

fork

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

output file 0

output file 1

input files

map phase

intermediate files on local disks

reduce phase

output files

splits input data into a set of M pieces

starts copies of user program

fork

fork

fork
Execution

master copy assigns Map and Reduce tasks

user program

master

worker

worker

worker

worker

output file 0

output file 1

split 0

split 1

split 2

split 3

split 4

input files

map phase

intermediate files on local disks

reduce phase

output files
Execution: map phase

map task reads from input “split”, passes each <key,value> to user Map function

split 0 → worker → intermediate files on local disks → worker → output file 0
split 1 → worker → intermediate files on local disks → worker → output file 1
split 2 → worker → intermediate files on local disks → worker
split 3 → worker → intermediate files on local disks → worker
split 4 → worker → intermediate files on local disks → worker

input files → map phase → intermediate files on local disks → reduce phase → output files
Execution

intermediate <key, value> produced by Map are written to local disk

intermediate keys partitioned into R pieces

user program

master

split 0

split 1

split 2

split 3

split 4

worker

local write

worker

worker

worker

output file 0

output file 1

input files

map phase

intermediate files on local disks

reduce phase

output files
Execution: reduce

Reducer workers read (remote read) intermediate data from local disks of mappers and sort \(<\text{keyI, list(v)}\)> by keys.
Execution: reduce phase

reduce worker iterates over the sorted intermediate data and passes \(<key, \text{list(values)}>\) to user Reduce function.

- **input files**
 - split 0
 - split 1
 - split 2
 - split 3
 - split 4

- **map phase**
 - worker
 - worker
 - worker

- **intermediate files on local disks**
 - intermediate files

- **reduce phase**
 - worker
 - worker
 - worker

- **output files**
 - output file 0
 - output file 1
Execution: output

outputs of user Reduce function are appended to final output files
Data locality

- Input data stored in local disks of cluster machines
- Several copies of each block of data on different machines
- MapReduce master tries to assign a map task to a machine that contains a copy of the task’s input data, or to a machine near that (on the same network switch)
- Most input data is read locally → consumes no bandwidth
Fault tolerance

- MapReduce library designed to help process very large data → must handle machine failures

- Worker failure:
 - completed map tasks are reset to initial idle state (their output data is unavailable)
 - in-progress map and reduce tasks also reset to idle
 - idle tasks are eligible for rescheduling
 - reduce tasks notified if map task rescheduled (reads data from new worker)
Worker failure
Recovery by re-execution

user program

master

worker

worker

worker

worker

input files

map phase

intermediate files on local disks

reduce phase

output files

split 0

split 1

split 2

split 3

split 4

data 0

data 1

data 2

data 3

data 4

output file 0

output file 1
Fault tolerance

• **Master failure**

 • master performs periodic checkpoints of its data

 • upon failure, a new master copy can start from the checkpoint state

• **Master data:**

 • status of each task (idle, in-progress, complete) and machine id of non-idle tasks

 • locations and sizes of R intermediate data files generated by each map task
Recover from master’s execution log log

user program

master

worker

worker

worker

worker

execution log on google file system

split 0
split 1
split 2
split 3
split 4
some useful extensions: **Partitioning**

- **Partitioning function**
 - default partitioning function uses hashing (e.g. \(\text{hash}(\text{key}) \mod R \))

- Library also supports user-provided partitioning functions
 - e.g. \(\text{hash}(\text{Hostname}(\text{urlkey})) \mod R \rightarrow \text{all} \) urls from same host end up in same output file
some useful extensions: **Combiner function**

- **Combiner**: does partial merging of data produced by a map function
 - decreases the amount of data that needs to be read (over the network) by reduce tasks
 - e.g.: word count Map typically emits hundreds or thousands of pairs `<the, 1>` to be sent over the network and added by a Reduce function
 - Combiner function is executed on each machine which performs a Map
 - output stored in intermediate files
 - Speedups some classes of MapReduce computations
Example: Word frequency

- **Input:** Large number of text documents
- **Task:** Compute word frequency across all documents
 - Frequency is calculated using the total word count
- **A naive solution with basic MapReduce model requires two MapReduces**
 - **MR1:** count number of all words in these documents
 - Use combiners
 - **MR2:** count number of each word and divide it by the total count from MR1
Word frequency

• Can we do better?

• Two nice features of Google's MapReduce implementation
 • Ordering guarantee of reduce key
 • Auxiliary functionality: EmitToAllReducers(k, v)

• A nice trick: To compute the total number of words in all documents
 • Every map task sends its total word count with key " " to ALL reducer splits
 • Key " " will be the first key processed by reducer
 • Sum of its values → total number of words!
map(String key, String value):

// key: document name, value: document contents
int word_count = 0;
for each word w in value:
 EmitIntermediate(w, "1");
 word_count++;
 EmitIntermediateToAllReducers("", AsString(word_count));

combine(String key, Iterator values):
// Combiner for map output
// key: a word, values: a list of counts
int partial_word_count = 0;
for each v in values:
 partial_word_count += ParseInt(v);
Emit(key, AsString(partial_word_count));
reduce(String key, Iterator values):

// Actual reducer
// key: a word
// values: a list of counts
if (is_first_key):
 assert("" == key); // sanity check
 total_word_count_ = 0;
 for each v in values:
 total_word_count_ += ParseInt(v)
else:
 assert("" != key); // sanity check
 int word_count = 0;
 for each v in values:
 word_count += ParseInt(v);
 Emit(key, AsString(word_count / total_word_count_));
Example: Average income in a city

- **SSTable 1**: (SSN, {Personal Information})
 123456: (John Smith; Sunnyvale, CA)
 123457: (Jane Brown; Mountain View, CA)
 123458: (Tom Little; Mountain View, CA)

- **SSTable 2**: (SSN, {year, income})

- **Task**: Compute average income in each city in 2007

- **Note**: Both inputs sorted by SSN
Average income solution

Mapper 1a:
Input: SSN → Personal Information
Output: (SSN, City)

Mapper 1b:
Input: SSN → Annual Incomes
Output: (SSN, 2007 Income)

Reducer 1:
Input: SSN → {City, 2007 Income}
Output: (SSN, [City, 2007 Income])

Mapper 2:
Input: SSN → [City, 2007 Income]
Output: (City, 2007 Income)

Reducer 2:
Input: City → 2007 Incomes
Output: (City, AVG(2007 Incomes))
Average income joined solution

Mapper:
Input: SSN → Personal Information and Incomes

Output: (City, 2007 Income)

Reducer
Input: City → 2007 Income

Output: (City, AVG(2007 Incomes))

- inputs are sorted
- custom input readers
Summary

• MapReduce is a flexible programming framework for many applications through a couple of restricted Map()/Reduce() constructs

• Google invented and implemented MapReduce around its infrastructure to allow its engineers scale with the growth of the Internet, and the growth of Google products/services

• Open source implementations of MapReduce, such as Hadoop are creating a new ecosystem to enable large scale computing over the off-the-shelf clusters
• More examples at:

Hadoop

• Open source, top-level Apache project

• GFS → HDFS
 • HDFS (Hadoop Distributed File System) is designed to store very large files across machines in a large cluster

• Used by Yahoo, Facebook, eBay, Amazon, Twitter...
Hadoop

- Scalable
 - Thousands of nodes
 - Petabytes of data over 10M files
 - Single file: gigabytes to terabytes
- Economical
 - Open source
 - Commercial off-the-shelf hardware (but master nodes should be reliable)
- Well-suited to bag-of-tasks applications (many bio apps)
 - Files are split into blocks and distributed across nodes
 - High-throughput access to huge datasets
Hadoop: architecture

- client sends job request to job tracker
- job tracker queries name node about physical data block locations
- input stream is split among the desired number of map tasks
- map tasks are scheduled closest to where data reside

Slide from Simone Leo(3,6),(992,993), “Python MapReduce Programming with Pydoop”, EuroPython 2011
Hadoop distributed file system

- Each block is replicated \(n \) times (3 by default)
- One replica on the same rack, the others on different racks
- User has to provide network topology

Slide from Simone Leo, “Python MapReduce Programming with Pydoop”, EuroPython 2011
Other Hadoop MapReduce components

- Combiner (local Reducer)
- RecordReader
 - Translates the byte-oriented view of input files into the record-oriented view required by the Mapper
 - Directly accesses HDFS files
 - Processing unit: InputSplit (filename, offset, length)
- Partitioner
 - Decides which Reducer receives which key
 - Typically uses a hash function of the key
- RecordWriter
 - Writes key/value pairs output by the Reducer
 - Directly accesses HDFS files
More on Hadoop

• Homework (and optional Hadoop final project)
 • we will provide instructions for downloading, configuring Hadoop, running your MapReduce application on your laptop/machine.