Parallel Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu
Parallel Molecular Dynamics

Spatial decomposition (short-ranged):
1. Divide the physical space into subspaces of equal volume
2. Assign each subspace to a compute node (more generally, to a process) in a parallel computer
3. Each node computes forces on the atoms in its subspace & updates their positions & velocities
Spatial Decomposition

- Process ID
 \[p_x = p/(P_yP_z) \]
 \[p_y = (p/P_z) \mod P_y \]
 \[p_z = p \mod P_z \]
 \[p = p_x \times P_yP_z + p_y \times P_z + p_z \]

\begin{verbatim}
In pmd.h
int vproc[3] = {1,1,2}, nproc = 2;

In pmd.c
MPI_Comm_rank(MPI_COMM_WORLD, &sid);
vid[0] = sid/(vproc[1]*vproc[2]);
vid[1] = (sid/vproc[2])%vproc[1];
vid[2] = sid%vproc[2];
\end{verbatim}
Neighbor Process ID

\[p'_\alpha(\kappa) = [p_\alpha + \delta_\alpha(\kappa) + P_\alpha] \mod P_\alpha \quad (\kappa = 0, ..., 5; \ \alpha = x, y, z) \]

\[p'(\kappa) = p'_x(\kappa) \times P_yP_z + p'_y(\kappa) \times P_z + p'_z(\kappa) \]

<table>
<thead>
<tr>
<th>Neighbor ID, (\kappa)</th>
<th>(\vec{\delta} = (\delta_x, \delta_y, \delta_z))</th>
<th>(\vec{\Delta} = (\Delta_x, \Delta_y, \Delta_z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (east)</td>
<td>(-1, 0, 0)</td>
<td>(-L_x, 0, 0)</td>
</tr>
<tr>
<td>1 (west)</td>
<td>(1, 0, 0)</td>
<td>(L_x, 0, 0)</td>
</tr>
<tr>
<td>2 (north)</td>
<td>(0, -1, 0)</td>
<td>(0, -L_y, 0)</td>
</tr>
<tr>
<td>3 (south)</td>
<td>(0, 1, 0)</td>
<td>(0, L_y, 0)</td>
</tr>
<tr>
<td>4 (up)</td>
<td>(0, 0, -1)</td>
<td>(0, 0, -L_z)</td>
</tr>
<tr>
<td>5 (down)</td>
<td>(0, 0, 1)</td>
<td>(0, 0, L_z)</td>
</tr>
</tbody>
</table>

- \(L_x, L_y, \) & \(L_z \) are the box lengths per process in the \(x, y \) & \(z \) directions
- Atom coordinates are in the range \([0, L_\alpha]\) (\(\alpha = x, y, z \)) in each process

In \texttt{pmd.c}

```c
int iv[6][3]= {{-1,0,0}, {1,0,0}, {0,-1,0}, {0,1,0}, {0,0,-1}, {0,0,1}};
...
for (ku=0; ku<6; ku++) {
    for (a=0; a<3; a++)
        k1[a] = (vid[a]+iv[ku][a]+vproc[a])%vproc[a];
    for (a=0; a<3; a++) sv[ku][a] = al[a]*iv[ku][a];
}
```

\(\text{destination rank coordinate shift for self-centric parallelization} \)
Neighbor Process ID Example

Periodic boundary condition
Parallel MD Concepts

Atom caching

1. First half kick to obtain $v_i(t+Dt/2)$
2. Update atomic coordinates to obtain $r_i(t+Dt)$
3. `atom_move()`: Migrate the moved-out atoms to the neighbor processes
4. `atom_copy()`: Copy the surface atoms within distance r_c from the neighbors
5. `compute_accel()`: Compute new accelerations, $a_i(t+Dt)$, including the contributions from the cached atoms
6. Second half kick to obtain $v_i(t+Dt)$

```
<table>
<thead>
<tr>
<th>r[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>⋮</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>n-1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>⋮</td>
</tr>
<tr>
<td>n+n_b-1</td>
</tr>
</tbody>
</table>
```

n: residents

n_b: copies
Linked-List Cell Method

Search for pairs only within the nearest neighbor cells:

\[O(N^2) \rightarrow O(N) \]

- **Cell size**
 \[L_{c\alpha} = \left\lfloor \frac{L_\alpha}{r_{c\alpha}} \right\rfloor \]
 \[r_{c\alpha} = \frac{L_\alpha}{L_{c\alpha}} \ (\alpha = x, y, z) \]

- **Cell index**
 \[c = c_x(L_{cy} + 2)(L_{cz} + 2) + c_y(L_{cz} + 2) + c_z \]
 \[c_x = \frac{c}{[(L_{cy} + 2)(L_{cz} + 2)]} \]
 \[c_y = \left[\frac{c}{(L_{cz} + 2)} \right] \mod (L_{cy} + 2) \]
 \[c_z = c \mod (L_{cz} + 2) \]

- **Atom \rightarrow cell mapping**
 \[c_\alpha = \left\lfloor \frac{(r_\alpha + r_{c\alpha})}{r_{c\alpha}} \right\rfloor \ (\alpha = x, y, z) \]
List Construction Algorithm

/* Reset the headers, head */
for (c=0; c<lcyz2; c++) head[c] = EMPTY;
/* Scan atoms to construct headers, head, & linked lists, lscl */
for (i=0; i<n+nb; i++) {
 /* Vector cell index to which this atom belongs */
 for (a=0; a<3; a++) mc[a] = (r[i][a]+rc[a])/rc[a];
 /* Translate the vector cell index, mc, to a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc[2]+mc[2];
 /* Link to the previous occupant (or EMPTY if you're the 1st) */
 lscl[i] = head[c];
 /* The last one goes to the header */
 head[c] = i;
}

In the above:
lcyz2 = lc[2][1]*lc[2][2]
where
lc[2][a] = lc[a]+2 (a = 0,1,2)
lcyz2 = lcyz2*lc[2][0]
/* Scan inner cells (resident) */
for (mc[0]=1; mc[0]<=lc[0]; (mc[0])++)
for (mc[1]=1; mc[1]<=lc[1]; (mc[1])++)
 /* Calculate a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
 /* Scan the neighbor cells (including itself) of cell c (resident + cached) */
 for (mcl[0]=mc[0]-1; mcl[0]<=mc[0]+1; (mcl[0])++)
 /* Calculate the scalar cell index of the neighbor cell */
 c1 = mcl[0]*lcyz2+mcl[1]*lc2[2]+mcl[2];
 /* Scan atom i in cell c */
 i = head[c];
 while (i != EMPTY) {
 /* Scan atom j in cell c1 */
 j = head[c1];
 while (j != EMPTY) {
 ...
 if (i<j && r_ij<r_c^2) Process pair (i, j)
 ...
 j = lsc1[j];
 }
 i = lsc1[i];
 }
 }
}
Parallel Interaction Computation

SPMD: Who does what?
Each process computes:
1. The forces on its resident atoms
2. The potential energy between resident pairs & 1/2 of that between resident-cached pairs

for resident cells, c {
 for neighbor (resident or cached) cells, c1 {
 scan atom i in cell c using c’s linked list {
 scan atom j in cell c1 using c1’s linked list {
 ...
 if (i<j && r_{ij} r_c^2) {
 compute pair force a_{ij} & potential u(r_{ij})
 bintra = j < n; /* j is resident? */
 a_i += a_{ij}; if (bintra) a_j -= a_{ij};
 if (bintra) lpe += u(r_{ij}); else lpe += u(r_{ij})/2;
 }
 }
 }
 }
}

MPI_Allreduce(&lpe, &potEnergy,...,MPI_SUM,...);
Reset the number of received cache atoms, nbnew = 0 for x, y, and z directions
 Make boundary-atom lists, lsb, for lower and higher directions including both resident, n, and cache, nbnew, atoms (within rc from boundary)
 for lower and higher directions
 Send/receive boundary-atom coordinates to/from the neighbor
 Increment nbnew;
 endfor
endfor
nb = nbnew
Implementing Atom Caching

Copying condition

\[
\text{bbd}(ri[], ku) \{
\begin{align*}
kd &= ku / 2 \ (= 0|1|2) \\
\text{lower|higher} \\
\text{kd} &= ku \% 2 \ (= 0|1) \\
\text{if} \ (kd == 0) \\
\text{return} \ ri[kd] < \text{RCUT} \\
\text{else} \\
\text{return} \ al[kd] - \text{RCUT} < ri[kd]
\end{align*}
\]

3 phases of message passing

1. Message buffering: \(\text{dbuf} \leftarrow r-sv \) (shift), gather
2. Message passing: \(\text{dbufr} \leftarrow \text{dbuf} \)
 - Send \(\text{dbuf} \)
 - Receive \(\text{dbufr} \)
3. Message storing: \(r \leftarrow \text{dbufr} \), append after the residents
3-phase (deadlock-free) message passing

1. Message buffering: \(dbuf \leftarrow r \), gather
2. Message passing: \(dbufr \leftarrow dbuf \)
 /* Even node: send & recv, if not empty */
 if (mynparity[kd] == 0) {
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 }
 /* Odd node: recv & send, if not empty */
 else if (mynparity[kd] == 1) {
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 }
 /* Single layer: Exchange information with myself */
 else
 for (i=0; i<3*nrc; i++) dbufr[i] = dbuf[i];
3. Message storing: \(r \leftarrow dbufr \), append
11. Q: My parallel program runs on other parallel machines but seems to deadlock on the SP-1 when using EUI, EUI-H, or Chameleon.

A: The following parallel program can deadlock on any system when the size of the message being sent is large enough:

```c
send( to=partner, data, len, tag )
recv( from=partner, data, maxlen, tag )
```

where these are blocking send's and receives (mp_bsend in EUI/EUI-H and PIBsend in Chameleon). For many systems, deadlock does not occur until the message is very long (often 128 KBytes or more). For EUI, the size is (roughly) 128 bytes (not KBytes) and for EUI-H, the size if (again roughly) 4 KBytes. The limit for Chameleon is the same as the underlying transport layer (i.e., the EUI or EUI-H limits).

To fix this you have several choices:

- **pmd.c** Reorder your send and receive calls so that they are pair up. For example, if there are always an even number of processors, you could use

```c
if (myid is even) {
    send( to=partner, data, len, tag )
    recv( from=partner, data, maxlen, tag )
}
else {
    recv( from=partner, data, maxlen, tag )
    send( to=partner, data, len, tag )
}
```

- **MPI_Irecv(); MPI_Ssend(); MPI_Wait();**

- **assignment** Use non-blocking sends and receives instead
Polyacetylene & Peierls Distortion

Fig 1: Electron dispersion and a band pattern of one-dimensional molecular system:
 a): metallic and b): insulator state, \(\rho(z) \)-a electronic density, \(a \)-a lattice period.

Nature’s spontaneous even-odd symmetry breaking

The Nobel Prize in Chemistry 2000 was awarded jointly to Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa “for the discovery and development of conductive polymers”.

H H H C C C C C H
H H H H H H H H
n
Atom Migration: `atom_move()`

Reset the number of received new immigrants, `newim = 0`
for x, y, and z directions

Make moving-atom lists, `mvque`, for lower and higher directions including both resident, `n`, and immigrant, `newim`, atoms but excluding those already moved out for lower and higher directions

Send/receive moving-atom coordinates to/from the neighbor
(When moving, `r[][0] ← MOVED_OUT = -10^{10}`)

Increment `newim`

Endfor

Endfor

Compress the r array to eliminate the moved-out atoms
Implementing Atom Migration

Moving condition

```c
bmv(ri[], ku) {
    kd = ku / 2 (= 0|1|2)
    kdd = ku % 2 (= 0|1)
    if (kdd == 0)
        return ri[kd] < 0.0
    else
        return al[kd] < ri[kd]
}
```

3 phases of message passing

1. Message buffering: `dbuf ← r–sv (shift) & rv`, gather
 Mark MOVED_OUT in `r`
2. Message passing: `dbufr ← dbuf`
 Send `dbuf`
 Receive `dbufr`
3. Message storing: `r & rv ← dbufr`, append after the residents
Parallel computing:
Specifies who does what

Parallel molecular dynamics:
Who does what = each processor computes forces on only atoms in the subspace assigned to it & update their positions & velocities
Scalability Metrics for Parallel Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu
Parallel Efficiency

Parallel computing = solving a big problem \((W)\) in a short time \((T)\) using many processors \((P)\)

- **Execution time:** \(T(W,P)\)
 - \(W\): Workload
 - \(P\): Number of processors

- **Speed:**

 \[S(W,P) = \frac{W}{T(W,P)} \]

- **Speedup:**

 \[S_P = \frac{S(W_P,P)}{S(W_1,1)} = \frac{W_P T(W_1,1)}{W_1 T(W_P,P)} \]

- **Efficiency:**

 \[E_P = \frac{S_P}{P} = \frac{W_P T(W_1,1)}{PW_1 T(W_P,P)} \]

How to scale \(W_P\) with \(P\)?
Fixed Problem-Size (Strong) Scaling

Solve the same problem faster

\(W_P = W \text{ — constant (strong scaling)} \)

- **Speedup:**
 \[
 S_P = \frac{W_P T(W_1,1)}{W_1 T(W_P,P)} = \frac{T(W,1)}{T(W,P)}
 \]

- **Efficiency:**
 \[
 E_P = \frac{T(W,1)}{PT(W,P)}
 \]

- **Amdahl's law:** \(f \) (= sequential fraction of the workload) limits the asymptotic speedup

 \[
 T(W,P) = fT(W,1) + \frac{(1-f)T(W,1)}{P}
 \]

 \[
 \therefore S_P = \frac{T(W,1)}{T(W,P)} = \frac{1}{f + (1-f)/P}
 \]

 \[
 \therefore S_P \to \frac{1}{f} \quad (P \to \infty)
 \]
Isogranular (Weak) Scaling

Solve a larger problem within the same time duration

\(W_P = Pw \) (weak scaling)

\(w = \) constant workload per processor (granularity)

- **Speedup:**
 \[
 S_P = \frac{S(P \cdot w, P)}{S(w, 1)} = \frac{P \cdot w / T(P \cdot w, P)}{w / T(w, 1)} = \frac{P \cdot T(w, 1)}{T(P \cdot w, P)}
 \]

- **Efficiency:**
 \[
 E_P = \frac{S_P}{P} = \frac{T(w, 1)}{T(P \cdot w, P)}
 \]
Analysis of Parallel MD

- Parallel execution time:
 Workload \(\propto \) Number of atoms, \(N \) (linked-list cell algorithm)

\[
T(N,P) = T_{\text{comp}}(N,P) + T_{\text{comm}}(N,P) + T_{\text{global}}(P)
\]

\[
= a \frac{N}{P} + b \left(\frac{N}{P} \right)^{2/3} + c \log P
\]
Fixed Problem-Size Scaling

- **Speedup:**
 \[S_P = \frac{T(N,1)}{T(N,P)} = \frac{aN}{aN/P + b(N/P)^{2/3} + c \log P} \]

- **Efficiency:**
 \[E_P = \frac{S_P}{P} = \frac{1}{1 + \frac{b(P/N)^{1/3}}{a(N)} + \frac{c \log P}{a}} \]

pmd.c: \(N = 16,384 \), on HPC
Isogranular Scaling of Parallel MD

• \(n = N/P = \text{constant} \)

• Efficiency:

\[
E_P = \frac{T(n,1)}{T(nP,P)} = \frac{an}{an + bn^{2/3} + c \log P} = \frac{1}{1 + \frac{b}{a} n^{-1/3} + \frac{c}{an} \log P}
\]

pmd.c: \(N/P = 16,384 \), on HPC
• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO$_2$
• 8.5 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores

QMD (quantum molecular dynamics): DC-DFT
RMD (reactive molecular dynamics): F-ReaxFF
MD (molecular dynamics): MRMD
Portable Parallel Efficiency

• Weak-scaling parallel efficiency of 0.989 for a new generation of reactive molecular dynamics (RMD) on 131,072 Intel Knights Landing cores