Intel Xeon Phi Programming

Patrick E. Small & Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
University of Southern California

Email: (patrices, anakano)@usc.edu

Goal: Multithreading on Intel Xeon Phi co-processor
Two Supercomputing Parties in the US

GPU

Titan: Oak Ridge Nat’l Lab
17.6 Petaflop/s
AMD Opteron + NVIDIA K20x

Phi

Aurora: Argonne Nat’l Lab (2019)
180 Petaflop/s
Intel Xeon Phi

GPU vs. Phi
Other Forthcoming Architectures

China

Tianhe (天河), Guanzhou
TH-2: Intel Xeon Phi (33.9 Petaflop/s)
TH-2A: GPDSP, China Accelerator

Japan

Post-K (京), Kobe
ARM/Fujitsu

DSP vs. ARM
Intel Xeon Phi Co-Processor
Intel Xeon Phi Software
1. Start a process on host CPU
2. Allocate memory in Phi co-processor
3. Send input data from host to co-processor
 #pragma offload target(mic) in(data:length(size))
4. Execute a function on co-processor using OpenMP multithreading
 #pragma omp
5. Send output data from co-processor back to host