Virtual Reality Application

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu
CAVE Visualization System

• CAVE (CAVE Automatic Virtual Environment): A fully immersive & interactive 10^3 virtual environment (VE)
• ImmersaDesk: A semi-immersive with a $4' \times 5'$ display

http://www.mechdyne.com
http://www.vrac.iastate.edu
http://www.mechdyne.com
CAVE Components

- **Stereographics:** The projector interleaves images for left & right eyes at a rate of 120 frame/s synchronized with an LCD shutter glass via an infrared emitter; 3D perception is created by showing the two eyes slightly rotated objects.

- **Wand:** A 3D mouse with buttons; the position & angle of the wand as well as button press are user inputs (cf. Wii).

- **Magnetic tracking system:** A sensor is attached to a user’s head so that the scene can be changed according to the user’s position.
CAVE Programming

• CAVE library: A library of C functions & macros to control the operation of the CAVE: keep all the devices synchronized; produce the correct perspective for each wall; & provide the applications with the current state of all the CAVE elements

• Compiling a CAVE application:

```bash
LIBS = -L/usr/local/CAVE/lib32 -lcave_ogl -lGLU -lGL -lXi -lX11 -lm
cc -O -o ball ball.o $(LIBS)
```

• CAVE coordinate system: 10^3 with the origin at the central floor

http://www.evl.uic.edu/pape/CAVE/prog
#include <cave_ogl.h>
#include <GL/glu.h>

void main(int argc, char **argv) {
 CAVEConfigure(&argc, argv, NULL); CAVEInit(); // Initialize the CAVE
 CAVEInitApplication(init_gl, 0); // Pointer to GL initialization function
 CAVEDisplay(draw_ball, 0); // Pointer to drawing function
 while (!CAVEgetbutton(CAVE_ESCKEY)) sginap(10); // Continue until ESC hit
 CAVEExit();
}

void init_gl(void) {
 float redMaterial[] = { 1, 0, 0, 1 }; // Ambient and diffuse color for the material
 glEnable(GL_LIGHT0);
 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, redMaterial);
 sphereObj = gluNewQuadric();
}

void draw_ball(void) {
 glClearColor(0., 0., 0., 0.);
 glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
 glEnable(GL_LIGHTING);
 glPushMatrix();
 glTranslatef(0.0, 4.0, -4.0);
 gluSphere(sphereObj, 1.0, 8, 8);
 glPopMatrix();
 glDisable(GL_LIGHTING);
}

http://www.evl.uic.edu/pape/CAVE/prog
X3D

- X3D is an open standards XML (extensible markup language)-enabled 3D file format for real-time communication of 3D data across applications over network.
- With X3D browsers and plug-ins, X3D becomes immersive allowing a user to walk through the 3D scene.
- An X3D file is publishable directly on the World Wide Web; an X3D browser acts as a helper application at the client side.

- **X3D homepage**
 http://www.web3d.org

- **X3D plug-ins for Windows, Macintosh, and Linux**
 http://www.web3d.org/x3d/content/examples/X3dResources.html
3D in Hollywood

http://www.youtube.com/watch?v=avecKPWqYqM
3D in Science

- **Anaglyph**: Stereoscopic 3D effect by means of encoding each eye’s image using filters of different colors (typically red & cyan).

3D in Molecular Dynamics (1)

K. Nomura et al.,
Phys. Rev. Lett.
99, 148303 (’07)
3D in Molecular Dynamics (2)

Y. Chen et al., Appl. Phys. Lett. 93, 171908 (’08)
How to Make Anaglyph Stereo

• In the main window of the VMD software, go to the Display menu, then the Stereo submenu

• Select the Left view & save the image as an image file

• Next select the Right view & save the image as another image file

• Use software such as Photoshop to make an anaglyph by image processing

www.ks.uiuc.edu/Research/vmd/
www.scec.org/geowall/makeanaglyph.html