In this assignment, you will write your own global summation program (equivalent to `MPI_Allreduce`) using `MPI_Send` and `MPI_Recv`. Your program should run on $P = 2^l$ processors ($l = 0, 1,...$). Each process contributes a partial value, and at the end, all the processes will have the globally summed value of these partial contributions.

Your program will use a communication structure called butterfly, which is structured as a series of pairwise exchanges (see the figure below where messages are denoted by arrows). This structure allows a global reduction among P processes to be performed in $\log_2 P$ steps.

\[
a_{000} + a_{001} + a_{010} + a_{011} + a_{100} + a_{101} + a_{110} + a_{111} = ((a_{000} + a_{001}) + (a_{010} + a_{011})) + ((a_{100} + a_{101}) + (a_{110} + a_{111}))
\]

At each level l, a process exchanges messages with a partner whose rank differs only at the l-th bit position in the binary representation.

HYPERCUBE TEMPLATE

We can use the following template to perform a global reduction using any associative operator OP (such as multiplication or maximum), $(a \text{ OP } b) \text{ OP } c = a \text{ OP } (b \text{ OP } c)$.

```plaintext
procedure hypercube(myid, input, logP, output)
begin
  mydone := input;
  for $l := 0$ to $logP-1$ do
    begin
      partner := myid XOR $2^l$;
      send mydone to partner;
      receive hisdone from partner;
      mydone = mydone $\text{ OP }$ hisdone
    end
  output := mydone
end
```

USE OF BITWISE LOGICAL XOR

Note that

\[
0 \text{ XOR } 0 = 1 \text{ XOR } 1 = 0;
0 \text{ XOR } 1 = 1 \text{ XOR } 0 = 1.
\]

so that $a \text{ XOR } 1$ flips the bit a, \textit{i.e.},
\[a \text{ XOR } 1 = \bar{a} \]
\[a \text{ XOR } 0 = a \]

where \(\bar{a} \) is the complement of \(a \) (\(\bar{a} = 1|0 \) for \(a = 0|1 \)). In particular, \(\text{myid XOR } 2^l \) reverses the \(l \)-th bit of the rank of this process, \(\text{myid} \):

\[\text{abcdefg XOR } 0000100 = \text{abcd } \bar{e}fg \]

Note that the XOR operator is \(^\wedge \) (caret symbol) in the C programming language.

ASSIGNMENT

Complete the following program by implementing the function, `global_sum`, using `MPI_Send` and `MPI_Recv` functions and the hypercube template given above.

Submit the source code as well as the printout from a test run on 4 processors and that on 8 processors.

```c
#include "mpi.h"
#include <stdio.h>

int nprocs; /* Number of processors */
int myid;    /* My rank */

double global_sum(double partial) {
    /* Implement your own global summation here */
}

int main(int argc, char *argv[]) {
    double partial, sum, avg;
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    partial = (double) myid;
    printf("Node %d has %le\n", myid, partial);

    sum = global_sum(partial);

    if (myid == 0) {
        avg = sum/nprocs;
        printf("Global average = %le\n", avg);
    }

    MPI_Finalize();
    return 0;
}
```