CSCI596 Assignment 2—Parallel Computation of π
Due: September 19 (Wed), 2018

The purpose of this assignment is to acquire hands-on experience on the *scalability analysis* of a parallel program — one of the key skills you learn in this class. We use a simple application that utilizes the function you have written for assignment 2 (where the purpose was to obtain a confidence that `MPI_Send()` and `MPI_Recv()` are sufficient to build any parallel programs, using a concrete example of global reduction.)

Part I: Programming

Write a message passing interface (MPI) program, `global_pi.c`, to compute the value of π based on the lecture note on “Parallel Computation of Pi” and using the `global_sum()` function you have implemented in assignment 1.

(Assignment)
1. Submit the source code of `global_pi.c`.

(Note)
- Insert `MPI_Wtime()` function (which takes no argument and returns the wall-clock time in seconds as `double`) to measure the running time of the program.

Part II: Scalability

In this assignment, we measure the scalability of `global_pi.c`.

(Assignment)
2. *(Fixed problem-size scaling)* Run your `global_pi.c` with the fixed number of quadrature points, $N_{\text{BIN}} = 10^7$, varying the number of compute nodes = 1, 2, 4 and 8 with processor per node 1 (*i.e.*, the number of processors $P = 1, 2, 4$ and 8). Plot the fixed problem-size parallel efficiency as a function of P.

3. *(Isogranular scaling)* Run `global_pi.c` with the constant number of quadrature points per processor, $N_{\text{BIN}}/P = 10^7$, per processor for $P = 1, 2, 4$ and 8. Plot the isogranular parallel efficiency as a function of P.