Load Balancing

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu
Load Balancing

• **Goal:** Keep all processors equally busy while minimizing inter-processor communication for irregular parallel computations

• **Issues:**
 - Spatial data vs. generic graph
 - Static vs. adaptive
 - Incremental vs. non-incremental

• **Load-balancing schemes:**
 - Recursive bisection
 - Spectral method
 - Spacefilling curve
 - Curved space
 - Load diffusion
Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

Optimization problem:
• Minimize the load-imbalance cost
• Minimize the communication cost
• Topology-preserving spatial decomposition
 → structured 6-step message passing minimizes latency

\[E = t_{\text{comp}} \left(\max_p \{ i \mid r_i \in p \} \right) + t_{\text{comm}} \left(\max_p \{ i \mid \| r_i - d_p \| < r_c \} \right) + t_{\text{latency}} \left(\max_p \left[N_{\text{message}}(p) \right] \right) \]
Computational-Space Decomposition

Topology-preserving “computational-space” decomposition in curved space

Curvilinear coordinate transformation

$$\xi = x + u(x)$$

Particle-processor mapping: regular 3D mesh topology

\[
\begin{align*}
p(\xi_i) &= p_x(\xi_{ix})P_yP_z + p_y(\xi_{iy})P_z + p_z(\xi_{iz}) \\
p_\alpha(\xi_{i\alpha}) &= \left[\xi_{i\alpha}P_\alpha / L_\alpha\right] \quad (\alpha = x,y,z)
\end{align*}
\]

Regular mesh topology in computational space, ξ

Curved partition in physical space, x

Wavelet-based Adaptive Load Balancing

- Simulated annealing to minimize the load-imbalance & communication costs, $E[\xi(x)]$
- Wavelet representation speeds up the optimization

$$\xi(x) = x + \sum_{l,m} d_{lm} \psi_{lm}(x)$$

A. Nakano, *Concurrency: Practice and Experience* 11, 343 ('99)
Load Balancing as Graph Partitioning

• Need: Decompose tasks without spatial indices

• Graph partitioning: Given a graph $G = (N, E, W_N, W_E)$
 – N: node set = \{j | tasks\}
 – W_N: node weights = \{$w_N(j)$: task costs\}
 – E: edge set = \{(j,k) | messages from j to k\}
 – W_E: edge weights = \{$w_E(j,k)$: message sizes\}

choose a partition $N = N_1 \cup N_2 \cup \ldots \cup N_P$ to minimize

 – $\max_p \{\sum_{j \in Np} w_N(j)\}$
 – $\max_{(p,q)} \{\sum_{j \in Np, k \in Nq} w_E(j,k)\}$

• Graph bisection: Special case of $N = N_1 \cup N_2$

• Choosing optimal partitioning is known
to be NP-complete → need heuristics
Spectral Bisection: Motivation

1. Graph as point masses connected via harmonic springs
2. The node of the eigenvector of the Hessian matrix, $\partial^2 V/\partial x^2$, corresponding to the 2nd smallest eigenvalue separates the graph into 2
Spectral Bisection

Laplacian matrix:

\(L(G) \) of a graph \(G(N,E) \) is an \(|N| \times |N| \) symmetric matrix:
- \(L(G)(i,i) = \) degree of node \(i \) (number of incident edges)
- \(L(G)(i,j) = -1 \) if \(i \neq j \) and there is an edge \((i,j)\)
- \(L(G)(i,j) = 0 \) otherwise

Theorems:

1. The eigenvalues of \(L(G) \) are nonnegative:
 \[\lambda_1 = 0 \leq \lambda_2 \leq \cdots \leq \lambda_N \]
2. \(\lambda_2(L(G)) \neq 0 \) if and only if \(G \) is connected

Spectral bisection algorithm:

1. Compute eigenvector \(v_2 \) corresponding to \(\lambda_2(L(G)) \)
2. For each node \(i \) of \(G \)
 a. if \(v_2(i) < 0 \), put node \(i \) in partition \(N_- \)
 b. else put node \(i \) in partition \(N_+ \)

Example

\[
\begin{bmatrix}
1 & 1 & -1 \\
2 & -1 & 2 & -1 \\
3 & -1 & 2 & -1 \\
4 & -1 & 2 & -1 \\
5 & & & & \\
\end{bmatrix}
\]

Graph diagram:

```
1 --2-- 3 --4-- 5
```

Matrix:

\[
\begin{bmatrix}
1 & 1 & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1 \\
& & & \\
\end{bmatrix}
\]
$O(N) \lambda_2$ Computation

Lanczos algorithm:

- **Given an** $N \times N$ **symmetric matrix** A (*e.g.*, $L(G)$), **compute a** $K \times K$ **“approximation”** T **by performing** K **matrix-vector products, where** $K \ll N$

- **Approximate** A’s eigenvalues & eigenvectors using T’s

```
Choose an arbitrary starting vector $r$

$b(0) = ||r||$

j=0

repeat

  j=j+1

  q(j) = $r/b(j-1)$
  $r = A*q(j)$

  $r = r - b(j-1)*v(j-1)$
  $a(j) = v(j)^T * r$

  $r = r - a(j)*v(j)$
  $b(j) = ||r||$

until convergence
```

$T = \begin{bmatrix}
 a_1 & b_1 \\
 b_1 & a_2 & b_2 \\
 & 0 & 0 & 0 \\
 & & b_{K-2} & a_{K-1} & b_{K-1} \\
 & & & b_{K-1} & a_K
\end{bmatrix}$
Multilevel Partitioning

Recursively apply:

1. Replace \(G(N,E) \) by a coarse approximation \(G_c(N_c,E_c) \), & partition \(G_c \)
2. Use partition of \(G_c \) to obtain a rough partitioning of \(G \), then uncoarsen & iteratively improve it

\[
(N^+,N^-) = \text{Multilevel_Partition}(N,E)
\]

// returns \(N^+ \) and \(N^- \) where \(N = N^+ \cup N^- \)
if \(|N| \) is small

1. Partition \(G = (N,E) \) directly to get \(N = N^+ \cup N^- \)
 Return \((N^+,N^-) \)
else
2. Coarsen \(G \) to get an approximation \(G_c = (N_c,E_c) \)
3. \((N_c^+,N_c^-) = \text{Multilevel_Partition}(N_c,E_c) \)
4. Expand \((N_c^+,N_c^-) \) to a partition \((N^+,N^-) \) of \(N \)
5. Improve the partition \((N^+,N^-) \)
 Return \((N^+,N^-) \)
endif

Coarsening

Multilevel V-cycle
Continuous optimization is easier than discrete combinatorial optimization

cf. • **Linear combination of atomic potentials (LCAP)**
 • **Gradient-directed Monte Carlo (DGMC)**

LCAP:

\[v(r) = \sum_{R,A} b_A^R v_A^R(r) \]