Parallel Molecular Dynamics

This chapter explains the example parallel MD program, \texttt{pmd.c}, in detail.

Spatial Decomposition

- **Spatial decomposition**: The physical system to be simulated is partitioned into subsystems of equal volume. Processors in a parallel computer are logically arranged according to the topology of physical subsystems. Atoms that are located in a particular subsystem are assigned to the corresponding processor.

We use a simple 3D mesh (or torus because of the periodic boundary conditions) decomposition. Subsystems are (and accordingly processors are logically) arranged in a 3D array of dimensions \(P_x \times P_y \times P_z \) (\texttt{int vproc[3]} in \texttt{pmd.c}). Each subsystem is a parallel-piped of size \(L_x \times L_y \times L_z \) (\texttt{double a1[3]}).

PROCESSOR ID

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

\(P_x = 5 \) \(P_y = 4 \) \(P_z = 3 \)
Each processor is given a unique processor ID, p, the range of which is $[0, P-1]$ (int sid) where $P = P_x P_y P_z$ is the total number of processors (int nproc). We also define a vector processor ID $\bar{p} = (p_x, p_y, p_z)$ (int $\text{vid}[3]$), where $p_x = 0, ..., P_x - 1$; $p_y = 0, ..., P_y - 1$; and $p_z = 0, ..., P_z - 1$.

The relation between the sequential and vector ID’s is

\begin{align*}
p_x &= p / (P_y P_z) \\
p_y &= (p / P_z) \mod P_y \\
p_z &= p \mod P_z
\end{align*}

or

\[p = p_x P_y P_z + p_y P_z + p_z. \]

(Example) $(P_x, P_y, P_z) = (4, 3, 2)$

<table>
<thead>
<tr>
<th>Sequential processor ID, p</th>
<th>Vector ID, \bar{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>2 0 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>3 0 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>4 0 2</td>
<td>1 0 2</td>
</tr>
<tr>
<td>5 0 2</td>
<td>1 0 2</td>
</tr>
<tr>
<td>6 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>7 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>8 1 2</td>
<td>1 1 2</td>
</tr>
<tr>
<td>9 1 2</td>
<td>1 1 2</td>
</tr>
<tr>
<td>10 1 2</td>
<td>2 0 2</td>
</tr>
<tr>
<td>11 1 2</td>
<td>2 0 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

NEIGHBOR PROCESSOR ID

For each processor, the six face-shared neighbor are identified by a sequential index ($\kappa = 0, ..., 5$). For each neighbor, κ, the shift-length vector $\Delta = (\Delta_x, \Delta_y, \Delta_z)$ denotes the position of the neighbor subsystem relative to itself (double $\text{sv}[6][3]$). The following table lists the six neighbors, where an integer vector $\bar{\delta} = (\delta_x, \delta_y, \delta_z)$ specifies the relative location of each neighbor.

<table>
<thead>
<tr>
<th>Neighbor ID, κ</th>
<th>$\bar{\delta} = (\delta_x, \delta_y, \delta_z)$</th>
<th>$\Delta = (\Delta_x, \Delta_y, \Delta_z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (east)</td>
<td>$(-1, 0, 0)$</td>
<td>$(-L_x, 0, 0)$</td>
</tr>
<tr>
<td>1 (west)</td>
<td>$(1, 0, 0)$</td>
<td>$(L_x, 0, 0)$</td>
</tr>
<tr>
<td>2 (north)</td>
<td>$(0, -1, 0)$</td>
<td>$(0, -L_y, 0)$</td>
</tr>
<tr>
<td>3 (south)</td>
<td>$(0, 1, 0)$</td>
<td>$(0, L_y, 0)$</td>
</tr>
<tr>
<td>4 (up)</td>
<td>$(0, 0, -1)$</td>
<td>$(0, 0, -L_z)$</td>
</tr>
<tr>
<td>5 (down)</td>
<td>$(0, 0, 1)$</td>
<td>$(0, 0, L_z)$</td>
</tr>
</tbody>
</table>

The sequential processor ID, $p'(\kappa)$ (int $\text{nn}[6]$), is obtained by

\[p'_\alpha (\kappa) = [p_\alpha + \delta_\alpha(\kappa) + P_\alpha] \mod P_\alpha (\alpha = x, y, z) \]

and

\[p' (\kappa) = p'_x (\kappa) P_y P_z + p'_y (\kappa) P_z + p'_z (\kappa) \]

In an SPMD program using the MPI, each process knows its process ID through the returned rank value from an $\text{MPI_Comm_rank(MPI_Comm comm, int *rank)}$ call. We identify the rank with sid.

Parallel MD Concepts

Using the periodic boundary conditions, every subsystem has 26 neighbor subsystems, which share either a corner, an edge, or a face with it. (Or there are 6 face-sharing neighbor subsystems.) We express atomic coordinates relative to the origin of each subsystem, i.e., \(0 < x_\alpha < L_\alpha (\alpha = x, y, z)\). (Every subsystem thinks it is the center of the world.)

ATOM CACHING

- **Augmented system**: In order to compute interatomic interaction with cut-off length \(r_c\) (RCUT), atomic coordinates of 26 neighbor subsystems which are located within \(r_c\) from the subsystem boundary are copied to “this” processor (atom caching).

![Diagram of a subsystem and its neighbors]

- **Cache coherence** is maintained by copying the latest neighbor surface atoms every time before atomic accelerations are computed.

DATA STRUCTURES

- \(n\): The number of resident atoms which reside in “this” subsystem.
- \(nb\): The number of copied surface atoms from the neighbors.
- \(r[NMAX][3]\): Atomic coordinates relative to the subsystem origin. \(r[0:n-1][]\) hold the atoms reside in this subsystem, while \(r[n:n+nb-1][]\) hold the cached neighbor atoms.

<table>
<thead>
<tr>
<th>r[]</th>
<th>0</th>
<th>1</th>
<th>n-1</th>
<th>n</th>
<th>n+nb-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n residents | nb copies

ATOM MIGRATION

After the atomic coordinates are updated according to the velocity Verlet algorithm, some resident atoms may have moved out of the subsystem boundary. Such migrated atoms must be moved to proper processors.
PARALLEL MD ALGORITHM

In the parallel MD program, pmd.c, a single time step of the velocity-Verlet algorithm consists of the following steps.

1. First half kick to obtain \(v_i(t+Dt/2) \)
2. Update atomic coordinates to obtain \(r_i(t+Dt) \)
3. atom_move(): Migrate the moved-out atoms to the neighbor processors
4. atom_copy(): Copy the surface atoms within distance \(r_c \) from the neighbors
5. compute_accel(): Compute new accelerations, \(a_i(t+Dt) \), including the contributions from the cached atoms
6. Second half kick to obtain \(v_i(t+Dt) \)

Linked-List Cell Method for Interatomic Force Computation

function compute_accel()

Recall that a naive double-loop implementation to compute pair interactions scales as \(O(N^2) \). In fact, with a finite cut-off length, \(r_c \), an atom interacts with only a limited number of atoms \(\sim (4\pi/3) r_c^3 (N/V) \). The linked-list cell algorithm computes the entire interaction with \(O(N) \) operations.

CELLS

First divide the system consisting of the resident and cached atoms into small cells of equal size. The edge lengths of each cell, \((r_{cx}, r_{cy}, r_{cz}) \) (double rc[3]), must be at least \(r_c \); we use \(r_{ca} = L_c/L_{ca} \) where \(L_{ca} = L_c/r_c \). An atom in a cell interacts with only other atoms in the same cell and its 26 neighbor cells. Including the cached atoms, the range of atomic coordinates is \([-r_c, L_c + r_c] \) (\(\alpha = x, y, z \)). The number of cells to accommodate all these atoms is \([L_{cx}+2)(L_{cy}+2)(L_{cz}+2)\), where \(L_{c\alpha} = L_{ca}/r_{ca} \) (\(\alpha = x, y, z \)) (int 1c[3]). We identify a cell with a vector cell index, \(c = (c_x, c_y, c_z) \) (\(0 \leq c_x \leq L_{cx}+1; 0 \leq c_y \leq L_{cy}+1; 0 \leq c_z \leq L_{cz}+1 \)), and a sequential cell index,

\[
\begin{align*}
 c &= c_x(L_{cy}+2)(L_{cz}+2) + c_y(L_{cz}+2) + c_z \\
 c_x &= c/[(L_{cy}+2)(L_{cz}+2)] \\
 c_y &= [c/(L_{cz}+2)] \mod (L_{cy}+2) \\
 c_z &= c \mod (L_{cz}+2).
\end{align*}
\]

An atom with coordinate \(\vec{r} \) belongs to a cell with the vector cell index, \(c_\alpha = [(r_\alpha+r_{ca})/r_{ca}] \) (\(\alpha = x, y, z \)).
LISTS

The atoms belonging to a cell is organized as a linked list.

Data Structures

lscl[NMAX]: An array implementation of the linked list. lscl[i] holds the atom index to which the i-th atom points.
head[NCLMAX]: head[c] holds the index of the first atom in the c-th cell, or head[c] = EMPTY (= -1) if there is no atom in the cell.
ALGORITHM 1: LIST CONSTRUCTOR

/* Reset the headers, head */
for (c=0; c<lcxyz2; c++) head[c] = EMPTY;

/* Scan atoms to construct headers, head, & linked lists, lscl */
for (i=0; i<n+nb; i++) {
 /* Vector cell index to which this atom belongs */
 for (a=0; a<3; a++) mc[a] = (r[i][a]+rc[a])/rc[a];
 /* Translate the vector cell index, mc, to a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
 /* Link to the previous occupant (or EMPTY if you're the 1st) */
 lscl[i] = head[c];
 /* The last one goes to the header */
 head[c] = i;
}
lcyz2 = lc2[1]*lc2[2] where lc2[a] = lc[a]+2 (a = 0,1,2); lcxyz2 = lcyz2*lc2[0]

ALGORITHM 2: INTERACTION COMPUTATION

/* Scan inner cells */
for (mc[0]=1; mc[0]<=lc[0]; (mc[0])++)
 for (mc[1]=1; mc[1]<=lc[1]; (mc[1])++)
 /* Calculate a scalar cell index */
 c = mc[0]*lcyz2+mc[1]*lc2[2]+mc[2];
 /* Scan the neighbor cells (including itself) of cell c */
 for (mc1[0]=mc[0]-1; mc1[0]<=mc[0]+1; (mc1[0])++)
 for (mc1[1]=mc[1]-1; mc1[1]<=mc[1]+1; (mc1[1])++)
 /* Calculate the scalar cell index of the neighbor cell */
 c1 = mc1[0]*lcyz2+mc1[1]*lc2[2]+mc1[2];
 /* Scan atom i in cell c */
 i = head[c];
 while (i != EMPTY) {
 /* Scan atom j in cell c1 */
 j = head[c1];
 while (j != EMPTY) {
 ... if (i < j & r_{ij} < r_c^2) Process pair (i, j)
 ... j = lscl[j];
 i = lscl[i];
 }
 }
 }
 }
}

Note that the central cells, c, and hence the central atoms, i, are residents, whereas the pair atoms, j, are either residents or cached. The parallelization strategy in pmd.c is that each MPI process is responsible for computing the forces on its resident atoms. Accordingly, the force contribution, \(\vec{a}_{ij} \), between pair (i, j) is added on the force on atom j, only if j is resident. Since all cached atoms are appended after the n resident atoms, atom j is resident if j < n:

\[
\text{if (j < n) ra[j][a] = the a-th component of } \vec{a}_{ij}
\]

Regarding the potential energy calculation, note that if j is cached, the same pair, (i, j), is also considered by the process of which j is a resident. Our parallelization strategy is that each process adds 1/2 of the pair contribution:

\[
\text{if (j < n) potential energy += } u(r_{ij}); \text{ else potential energy += } u(r_{ij})/2;
\]
Note that each process first computes the local contribution to the potential energy, and subsequently \texttt{MPI_Allreduce()} is used to compute the global summation of the local potential energies.

\textbf{Atom Caching—function atom_copy()}

\textbf{DATA STRUCTURES}

\texttt{lsb[6][NBMAX]}: \texttt{lsb[ku][0]} is the total number of boundary atoms to be sent to neighbor \texttt{ku}; \texttt{lsb[ku][k]} is the atom ID, used in \texttt{r}, of the \texttt{k}-th atom to be sent.

\texttt{logical function bbd(r,ku):} true if the coordinate vector \texttt{r} is within distance \texttt{rc} from the face this subsystem shares with the \texttt{ku}-th neighbor.

The coordinates of the boundary atoms to the six face-sharing neighbors are sent to these nodes in six steps. Copies to the non-face-sharing neighbors (26 – 6 = 20) are done by message forwarding.

\textbf{ALGORITHM}

Reset the number of received cache atoms, \texttt{nbnew} = 0

\begin{algorithmic}
\For {x, y, and z directions}
\For {lower and higher directions including both resident, \texttt{n}, and cache, \texttt{nbnew}, atoms}
\For {lower and higher directions}
\State Send/receive boundary-atom coordinates to/from the neighbor*
\State Increment \texttt{nbnew}
\EndFor
\EndFor
\EndFor
\State \texttt{nb} = \texttt{nbnew}
\State \texttt{*Copying condition}
\State \texttt{bbd(r[i],ku) \{}
\State \hspace{1em} \texttt{kd} = \texttt{ku} / 2 \ (= 0|1|2)
\State \hspace{1em} \texttt{kdd} = \texttt{ku} \% 2 \ (= 0|1)
\State \hspace{1em} \If {\texttt{kdd} == 0}
\State \hspace{2em} \texttt{return r[kd] < RCUT}
\State \hspace{1em} \Else
\State \hspace{2em} \texttt{return a[kd] – RCUT < r[kd]}
\EndIf
\State \}}
\EndFor
\State \texttt{*Three-phase message passing}
\State \hspace{1em} 1. Message buffering: \texttt{dbuf \leftarrow r-sv (shift positions), gather}
\State \hspace{1em} 2. Message passing: \texttt{dbufr \leftarrowdbuf}
\State \hspace{1em} \hspace{1em} Send \texttt{dbuf}
\State \hspace{1em} \hspace{1em} Receive \texttt{dbufr}
\State \hspace{1em} 3. Message storing: \texttt{r \leftarrowdbufr, append after the residents}
\end{algorithmic}
Variable nsd is the number of atoms to be copied to the neighbor currently considered. The $3 \times nsd$ coordinates are packed in a 1D array, dbuf.

DEADLOCK AVOIDANCE

A circular send and receive relation could cause a deadlock. (Circular wait can occur if blocking.) In the following code, suppose that the destination node, inode, is defined as in the figure below.

```c
MPI_Send(dbuf, 3*nsd, MPI_DOUBLE_PRECISION, inode, 10, MPI_COMM_WORLD);
MPI_Recv(dufr, 3*np, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
```

With a finite buffer size in the receiver’s communication system, a sender blocks until the receiver’s buffer is cleared. However in the example above, each processor cannot start receiving until its send operation is completed.

To avoid this deadlock, we classify the processors into even and odd processors in each of the x, y, and z directions.
DATA STRUCTURES

myparity[0|1|2] = Parity of vector processor ID in the x|y|z direction. myparity[a] is 0|1 if the vector processor ID, vid[a], is even|odd. If there is only one processor in the a direction, myparity[a] = 2. In this case, no message passing is required.

ALGORITHM
1. Message buffering: dbuf ← r, gather
2. Message passing: dbufr ← dbuf
 /* Even node: send & recv, if not empty */
 if (myparity[kd] == 0) {
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 }
 /* Odd node: recv & send, if not empty */
 else if (myparity[kd] == 1) {
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,120,
 MPI_COMM_WORLD,&status);
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,120,MPI_COMM_WORLD);
 }
 /* Single layer: Exchange information with myself */
 else
 for (i=0; i<3*nrc; i++) dbufr[i] = dbuf[i];
3. Message storing: r ← dbufr, append

Atom Migration—function atom_move()

DATA STRUCTURES

mvque[6][NBMAX]: mvque[ku][0] is the # of to-be-moved atoms to neighbor ku; MVQUE[ku][k>0] is the atom ID, used in r, of the k-th atom to be moved.

logical function bmv(r,ku): .true. if the coordinate vector r is out of the subsystem boundary plane which faces the ku-th neighbor.

```
  1  2  3  4  5  6  7  8

r[]  0  1  2  3  4  5
     n

[0  1  2  3  4  6  7  8]

newim

0  2  3  5  6  7  8

Updated n
```

Migrate

Compress
The algorithm is basically the same as the one in atom_copy. During the 6-step loop, variable newim keeps the number of received new immigrants. These atoms are appended in the r array after the current resident. Suppose atom i has moved-out. When sending out r[i] to a proper neighbor, r[i] is marked as moved-out by putting constant MOVED_OUT (large negative value, -1e10, defined in pmd.h) in r[i][0]. When scanning n+newim atoms to sort out the moved-out atoms, these already-moved atoms are not considered. After the six move steps, the r array is compressed to remove the moved-out atoms.

ALGORITHM

Reset the number of received new immigrants, newim = 0

for x, y, and z directions

Make moving-atom lists, mvque, for lower and higher directions including both resident, n, and immigrant, newim, atoms but excluding those already moved out for lower and higher directions

Send/receive moving-atom coordinates to/from the neighbor

(When moving, r[i][0] ← MOVED_OUT = -1e10)

Increment newim

endfor

Compress the r array to eliminate the moved-out atoms

Moving condition

bmv(ri[], ku) {
 kd = ku / 2 (= 0|1|2)
 kdd = ku % 2 (= 0|1)
 if (kdd == 0)
 return ri[kd] < 0.0
 else
 return al[kd] < ri[kd]
}

#Three-phase message passing

1. Message buffering:dbuf ← r & rv, gather
 Mark MOVED_OUT in r
2. Message passing:dbufr ← dbuf
 Send dbuf
 Receivedbuf
3. Message storing: r & rv ← dbufr, append after the residents