Kinetic Monte Carlo Simulation

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Dept. of Computer Science, Dept. of Physics & Astronomy,
Dept. of Chemical Engineering & Materials Science,
Dept. of Biological Sciences
University of Southern California

Email: anakano@usc.edu

Predicting long-time dynamics
Rare Events

- Infrequent transitions from a local minimum to another local minimum

- Transition state theory to understand chemical reaction rates: Michael Polanyi & Henry Eyring in 1920’s & 1930’s

- Renewed interests in understanding self-organization (protein folding, life, etc.)
Energy Landscape

- Discrete abstraction: Partitioned configuration space

\[\mathbb{R}^{3N} = \bigcup_{\alpha} \mathbb{R}_\alpha; \mathbb{R}_\alpha \cap \mathbb{R}_\beta = \emptyset \]

where a $3N$-dim. configuration $q \in \mathbb{R}_\alpha$ converges to the α-th local minimum upon local minimization (N is the number of atoms)
Phase Space Distribution

- Phase-space distribution \(f(q, p, t) \): probability to find the system at \(3N \)-dim. position \(q = (q_1, ..., q_N) \) & \(3N \)-dim. momentum \(p = (p_1, ..., p_N) \) at time \(t \)
- Probability to find the system in \(\mathcal{R}_\alpha \) at time \(t \) (\(h \) is the Planck constant)
 \[
 P_\alpha(t) = \frac{1}{h^{3N}} \int_{\mathcal{R}_\alpha} dq \int dp f(q, p, t)
 \]
Outline

• Master equation

\[
\frac{dP_\alpha}{dt} = -\sum_\beta W_{\beta\alpha} P_\alpha (t) + \sum_\beta W_{\alpha\beta} P_\beta (t)
\]

\(W_{\beta\alpha} \): Transition rate from state \(\alpha \) to state \(\beta \)

• How to compute \(W_{\alpha\beta} \)? Transition state theory

\[
W_{\beta\alpha} \equiv v_\alpha \exp \left(-\frac{V_s - V_\alpha}{k_B T} \right)
\]

Vibration frequency at the \(\alpha \)-th local minimum

Minimum energy path along a saddle point (transition state)

• How to simulate the master equation: Kinetic Monte Carlo simulation

Let \(\{r_1, r_2, \ldots\} \) be a set of possible escape events, \(r = \sum_i r_i \), and \(u_1 \) & \(u_2 \) are uniform random numbers in \([0,1]\):

1. Pick the next event \(i \) as

\[
i = \min_j \left\{ \sum_{k=1}^j \frac{r_k}{r} > u_1 \right\}
\]

2. Advance the time by

\[
t = -\ln(u_2)/r
\]
Dynamics of Phase Space Distribution

- Phase-space distribution $f(q, p, t)$: probability to find the system at $3N$-dim. position $q = (q_1, ..., q_N)$ & $3N$-dim. momentum $p = (p_1, ..., p_N)$ at time t

- Probability to find the system in \mathcal{R}_α at time t (h is the Planck constant)

$$P_\alpha(t) = \frac{1}{h^{3N}} \int_{\mathcal{R}_\alpha} dq \int dp f(q, p, t)$$

- Time derivative ($L = $ Liouville operator; $H(q, p) = $ Hamiltonian)

$$\frac{dP_\alpha}{dt} = \frac{1}{h^{3N}} \int_{\mathcal{R}_\alpha} dq \int dp \frac{\partial}{\partial t} f(q, p, t)$$

$$= \frac{1}{h^{3N}} \int_{\mathcal{R}_\alpha} dq \int dp [-Lf(q, p, t)]$$

$$= \frac{1}{h^{3N}} \int_{\mathcal{R}_\alpha} dq \int dp \left[-\left(\frac{\partial H}{\partial p} \cdot \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \cdot \frac{\partial}{\partial p} \right) f(q, p, t) \right]$$

See supplementary note 1: “Liouville equation”
Population Dynamics

- Let

\[H(q, p) = \sum_{i=1}^{3N} \frac{p_i^2}{2m_i} + V(q) \]

then

\[\frac{dP_\alpha}{dt} = -\frac{1}{h^{3N}} \int_{\partial R_\alpha} dq \int d\mathbf{p} \sum_{i=1}^{3N} \frac{p_i}{m_i} \frac{\partial}{\partial q_i} f(q, p, t) + \frac{1}{h^{3N}} \int_{\partial R_\alpha} dq \int d\mathbf{p} \sum_{i=1}^{3N} \frac{\partial V}{\partial q_i} \frac{\partial}{\partial p_i} f(q, p, t) \]

\[= -\frac{1}{h^{3N}} \int_{\partial R_\alpha} dq \int d\mathbf{p} \sum_{i=1}^{3N} \frac{\partial}{\partial q_i} \left(\frac{p_i}{m_i} f(q, p, t) \right) \]

Gauss’ theorem

~ telescoping

where \(dS \) is the surface element pointing outward normal to the surface \(\partial R_\alpha \) that outlines \(R_\alpha \)

- \(dP_\alpha /dt \) is negative of the outward flux through \(\partial R_\alpha \)
Population Flux

- Partition the surface ∂R_α into
 $$\partial R_\alpha = \sum_\beta S_{\beta \alpha}$$

where $S_{\beta \alpha}$ is the surface splitting $R_\alpha \& R_\beta$ (normal pointing from α to β)

\[
\frac{dP_\alpha}{dt} = -\sum_\beta \frac{1}{h^{3N}} \int \sum_{i=1}^{3N} dS_i \int dP \sum_{i=1}^{3N} \frac{p_i}{m_i} \Theta \left(\sum_{i} dS_i \frac{p_i}{m_i} \right) f(q,p,t) \text{ outgoing}
\]

\[
+ \sum_\beta \frac{1}{h^{3N}} \int \sum_{i=1}^{3N} dS_i \int dP \sum_{i=1}^{3N} \frac{p_i}{m_i} \Theta \left(\sum_{i} dS_i \frac{p_i}{m_i} \right) f(q,p,t) \text{ incoming}
\]

where $\Theta(x) = 1 (x \geq 0) \& 0 (x < 0)$ is the step function
Local Equilibration Approximation

• Assume that within each \mathcal{R}_α, the phase space distribution is locally in thermal equilibrium, weighted to reproduce the current population (time scale of inter-state population transfer >> intra-state thermal equilibration time)

$$f(q,p,t) \simeq \frac{P_\alpha(t)}{P_\alpha(eq)} f_{eq}(q,p)$$

where

$$f_{eq}(q,p) = \frac{1}{\mathcal{Q}} \exp\left(-\frac{H(q,p)}{k_B T}\right)$$

and the partition function is split into

$$Q = \int \int \frac{dq dp}{h^{3N}} \exp\left(-\frac{H(q,p)}{k_B T}\right) = \sum_\alpha \int \int \frac{dq dp}{h^{3N}} \exp\left(-\frac{H(q,p)}{k_B T}\right) = \sum_\alpha Q_\alpha$$

$$\therefore P_\alpha(eq) = \frac{Q_\alpha}{Q} = \frac{1}{Q} \int \int \frac{dq dp}{h^{3N}} \exp\left(-\frac{H(q,p)}{k_B T}\right)$$
Master Equation

- Substituting the local-equilibration approximation into the population-flux equation, we obtain

\[
\frac{dP_{\alpha}}{dt} = -\sum_{\beta} \frac{1}{h^{3N}} \int_{S_{\beta \alpha}} \sum_{i=1}^{3N} dS_i \int d\mathbf{p} \sum_{i=1}^{3N} p_i \left(\sum_i dS_i \frac{p_i}{m_i} \right) f_{eq}(\mathbf{q}, \mathbf{p}) \frac{P_{\alpha}(t)}{P_{\alpha}(eq)} \\
+ \sum_{\beta} \frac{1}{h^{3N}} \int_{S_{\alpha \beta}} \sum_{i=1}^{3N} dS_i \int d\mathbf{p} \sum_{i=1}^{3N} p_i \left(\sum_i dS_i \frac{p_i}{m_i} \right) f_{eq}(\mathbf{q}, \mathbf{p}) \frac{P_{\beta}(t)}{P_{\beta}(eq)}
\]

\[
\therefore \frac{dP_{\alpha}}{dt} = -\sum_{\beta} W_{\beta \alpha} P_{\alpha}(t) + \sum_{\beta} W_{\alpha \beta} P_{\beta}(t)
\]

\[
W_{\alpha \beta} = \frac{1}{h^{3N}} \int_{S_{\alpha \beta}} \sum_{i=1}^{3N} dS_i \int d\mathbf{p} \sum_{i=1}^{3N} p_i \left(\sum_i dS_i \frac{p_i}{m_i} \right) f_{eq}(\mathbf{q}, \mathbf{p}) \frac{1}{P_{\beta}(eq)}
\]

\[
= \frac{1}{h^{3N}} \int_{S_{\alpha \beta}} \sum_{i=1}^{3N} dS_i \int d\mathbf{p} \sum_{i=1}^{3N} p_i \left(\sum_i dS_i \frac{p_i}{m_i} \right) e^{-H(\mathbf{q}, \mathbf{p})/k_B T} \left/ \frac{1}{h^{3N}} \int d\mathbf{q} d\mathbf{p} e^{-H(\mathbf{q}, \mathbf{p})/k_B T} \right.
\]

See supplementary note 2: “Master equation”

A. P. J. Jansen, *Introduction to KMC Simulations of Surface Reactions* (Springer, ’12)
Transition State Theory

- Reaction coordinate q_1 along a minimum-energy path separates the phase space into 2 regions—A ($q_1 < 0$) & B ($q_1 > 0$); all the other coordinates & momenta are collectively denoted as $X = (q, p) = (q_2, ..., q_{3N}, p_2, ..., p_{3N})$

- Probability to find the system being in B

 $$P_B(t) = \iiint \frac{dq_1 dp_1 dX}{h^{3N}} \Theta(q_1) f(q_1, p_1, X, t)$$

- Time derivative ($L = $ Liouville operator)

 $$\frac{dP_B}{dt} = \iiint \frac{dq_1 dp_1 dX}{h^{3N}} \Theta(q_1) \frac{\partial}{\partial t} f(q_1, p_1, X, t)$$

 $$= \iiint \frac{dq_1 dp_1 dX}{h^{3N}} \Theta(q_1) (-Lf(q_1, p_1, X, t))$$

 $$= \iiint \frac{dq_1 dp_1 dX}{h^{3N}} (L\Theta(q_1)) f(q_1, p_1, X, t)$$

 $$= \iiint \frac{dq_1 dp_1 dX}{h^{3N}} \left(\frac{p_1}{m_1} \delta(q_1) \right) f(q_1, p_1, X, t)$$

 $$= \iint \frac{dp_1 dX}{h^{3N}} \frac{p_1}{m_1} f(0, p_1, X, t)$$
Local Equilibration Approximation

- Split the integral into the gain (A → B) & loss (B → A) terms

\[
\frac{dP_B}{dt} = \left(\frac{dP_B}{dt} \right)_{A \rightarrow B} + \left(\frac{dP_B}{dt} \right)_{B \rightarrow A}
\]

\[
= \int_0^\infty \frac{dp_1}{h} \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f(0, p_1, X, t) + \int_{-\infty}^0 \frac{dp_1}{h} \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f(0, p_1, X, t)
\]

- Regions A & B locally (i.e., within the region) maintain the equilibrium distribution weighted to reproduce the current population

\[
f_{\alpha, \text{local}} = \frac{P_{\alpha}(t)}{P_{\alpha}(\text{eq})} f_{\text{eq}} \quad (\alpha = A, B)
\]

\[
f_{\text{eq}} = \frac{1}{Q} \exp\left(-\frac{H}{k_B T}\right)
\]

\[
Q = \iiint \frac{dq_1 dp_1 dX}{h^{3N}} \exp\left(-\frac{H}{k_B T}\right) = Q_A + Q_B
\]

\[
Q_A = \iiint_{q_1 < 0} \frac{dq_1 dp_1 dX}{h^{3N}} \exp\left(-\frac{H}{k_B T}\right) \quad Q_B = \iiint_{q_1 > 0} \frac{dq_1 dp_1 dX}{h^{3N}} \exp\left(-\frac{H}{k_B T}\right)
\]

\[
P_{\alpha}(\text{eq}) = \frac{Q_{\alpha}}{Q} \quad (\alpha = A, B)
\]
Transition State Theory

- Substituting the local equilibration approximation to the flux equation

\[
\left(\frac{dP_B}{dt} \right)_{A \to B} = \int_0^\infty dp_1 \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f_{eq}(0, p_1, X) \frac{P_A(t)}{P_A(\text{eq})}
\]

\[
\left(\frac{dP_B}{dt} \right)_{B \to A} = -\int_0^\infty dp_1 \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f_{eq}(0, p_1, X) \frac{P_B(t)}{P_B(\text{eq})}
\]

\[
\therefore \frac{dP_A(t)}{dt} = k_{BA} P_A(t) - k_{AB} P_B(t)
\]

\[
k_{BA} = \int_0^\infty dp_1 \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f_{eq}(0, p_1, X) \frac{1}{P_A(\text{eq})}
\]

\[
k_{AB} = \int_0^\infty dp_1 \int \frac{dX}{h^{3N-1}} \frac{p_1}{m_1} f_{eq}(0, p_1, X) \frac{1}{P_B(\text{eq})}
\]

- Analytical integration over \(p_1 \)

\[
k_{BA} = \int_0^\infty dp_1 \frac{p_1}{m_1} \exp(-p_1^2 / 2m_1k_B T) \int \frac{dX}{h^{3N-1}} \frac{\exp(-H / k_B T)_{q_1=p_1=0}}{Q} \]

\[
Q^* = \int \frac{dX}{h^{3N-1}} \exp(-H / k_B T)_{q_1=p_1=0}
\]

\[
Q^* = \int \frac{dX}{h^{3N-1}} \exp(-H / k_B T)_{q_1=p_1=0}
\]

\[
\frac{Q^*}{Q_A} = \frac{k_B T}{h} \frac{Q^*}{Q_A}
\]
Harmonic Transition State Theory

- In region A, we assume
 \[V(q_1, \ldots, q_{3N}) = V_A + \frac{1}{2} \sum_j m_j \left(\omega_j^A \right)^2 (q_j - b_j)^2 \]
 \[\therefore Q_A = \left(\frac{2\pi k_B T}{\hbar} \right)^{3N} \exp \left(-\frac{V_A}{k_B T} \right) \prod_{j=1}^{3N} \omega_j^A \]

- At the dividing surface, we assume
 \[V(q_1, \ldots, q_{3N}) = V_S - \frac{1}{2} a_{11} q_1^2 + \frac{1}{2} \sum_{j=2}^{3N} m_j \left(\omega_j^* \right)^2 q_j^2 \]
 \[Q^* = \int \frac{dX}{\hbar^{3N-1}} \exp \left(-\frac{H}{k_B T} \right) _{q_1=p_1=0} = \left(\frac{2\pi k_B T}{\hbar} \right)^{3N-1} \exp \left(-\frac{V_S}{k_B T} \right) \prod_{j=2}^{3N} \omega_j^* \]

\[\therefore k_{BA} = \frac{1}{2\pi} \exp \left(-\frac{V_S - V_A}{k_B T} \right) \frac{\prod_{j=1}^{3N} \omega_j^A}{\prod_{j=2}^{3N} \omega_j^*} \exp \left(-\frac{V_S - V_A}{k_B T} \right) \]

See supplementary note 3: “Transition state theory”
Digression: Save the World?

• Solar land-area requirement (with 10% energy conversion efficiency) to supply the global energy [Nathan Lewis, *Caltech*]

• Need better catalyst for splitting water [Lewis & Nocera, *PNAS* 103, 15729 ('06)]

\[2H_2O \xrightarrow{hv} 2H_2 + O_2 \]

COMPUTATIONAL METHODS

A search engine for catalysts

Trial and error has been the traditional method of finding the best catalyst for a reaction. A computational approach can reduce the lab work required.

Nature Mater. 5, 847 ('06)
A Job for Superatom

Molecular Dynamics Simulations of Rapid Hydrogen Production from Water Using Aluminum Clusters as Catalyzers

Fuyuki Shimojo,1,2 Satoshi Ohmura,1,2 Rajiv K. Kalia,1 Aiichiro Nakano,1 and Priya Vashishta1

1Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089-0242, USA
2Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
(Received 1 December 2009; published 26 March 2010)

\[
k_{H_2} = \frac{k_B T}{h} \exp\left(-\frac{\Delta}{k_B T_{room}}\right) = 10^{11} \text{s}^{-1}
\]
H₂ Production from Water Using LiAl Particles

16,661-atom QMD simulation of Li₄₄₁Al₄₄₁ in water on 786,432 IBM Blue Gene/Q cores

• Scalable to industrially relevant particle sizes

K. Shimamura et al., Nano Lett. 14, 4090 (’14)
Poisson Process

- **Poisson process** = sequence of events, in which the probability of an event to occur in time \([t,t+\delta]\) is \(r\delta\) (\(r\) is the rate) independent of history as \(\delta \to 0\).

- Probability \(P(n,t)\) that \(n\) events occur in time interval \(t=N\delta\):

\[
P(n,t) = C(N,n)(r\delta)^n (1 - r\delta)^{N-n} = \frac{N!}{n!(N-n)!} (r\delta)^n (1 - r\delta)^{N-n}
\]

\[
\xrightarrow{\frac{rt}{N} \to \infty} \frac{(rt)^n}{n!} e^{-rt}
\]

\[
\xrightarrow{N \to \infty} 1
\]

- **Sum rule:**

\[
\sum_{n=0}^{\infty} P(n,t) = \sum_{n=0}^{\infty} \frac{(rt)^n}{n!} e^{-rt} = 1
\]
Kinetic Monte Carlo Simulation

- **Probability density** $P(t)$ of time t between successive events

 $P(t)dt = \text{probability(\text{n} - \text{e} - \text{v} - \text{in} - [0, t] \wedge 1 - \text{n} - \text{e} - \text{v} - \text{in} - [t, t+dt])}$

 $= P(0, t) \times rdt = e^{-rt} \times rdt$

 $\therefore P(t) = re^{-rt}$

- **Random time-interval generation**: Let u be a uniform random number in $[0,1]$ & generate $t = -\ln(u)/r \in [0,\infty]$

 $\therefore P(t) = P(u) \left| \frac{du}{dt} \right| = 1 \times re^{-rt} = re^{-rt}$

- **Kinetic MC algorithm**: Let $\{r_1, r_2, \ldots\}$ be a set of possible events, $r = \Sigma_i r_i$, and $u_1 \& u_2$ are uniform random numbers in $[0,1]$:

 1. **Pick the next event** i as $i = \min_j \left\{ \frac{j \sum_k r_k}{r} > u_1 \right\}$

 2. **Advance the time by** $t = -\ln(u_2)/r$

 See supplementary note 4: “Kinetic Monte Carlo simulation”
Divide-\&-Conquer KMC Algorithm

- Domain decomposition: Concurrent events among multiple domains, d
 \[\Delta t = -\ln(rnd) / \sum_{d} r_d = O(N^{-1}) \implies -\ln(rnd) / \max_{d} (r_d) = O(1) \]

- Colored domain blocks: Avoids conflicting events by allowing concurrent events only with domains of the same color, which are well-separated

- Neighbor-domain caching for spatial decomposition via message-passing

- Dual linked-list cell method: (1) small cells for constructing neighbor lists for nearest-neighbor hopping events; (2) large cells for domain-block coloring

E. Martinez et al., J. Comp. Phys. 230, 1359 (’11)
Scalable Parallel KMC

- Benchmark tests on electron transfer in heme aggregates
- Better weak-scaling for coarser granularity (N hemes on P processors)

- Weak-scaling parallel efficiency 0.935 for a 4.2 billion-heme system on 1,024 Intel Xeon processors
Temporal Locality in Long-Time Dynamics

- **Temporal locality**: Rare transitions between local minimum-energy states
- **Transition state theory**: Reformulate *sequential* long-time dynamics as *parallel* search for low activation-barrier transition events
- **Discrete graph abstraction**: Linear combinations of atomistic events (LCAE)

- **Directionally heated nudged elastic band (NEB) method**: Search for thermally activated events without the knowledge of final states

\[
\mathbf{M} \dot{\mathbf{R}}_s = \mathbf{F}_s - \mathbf{M} \gamma_s \dot{\mathbf{R}}_s \quad (s = 0, \ldots, S - 1)
\]

\[
\mathbf{F}_s = \begin{cases}
\frac{\partial V}{\partial \mathbf{R}_s} + \mathbf{F}_s^{spr} \bigg|_\parallel & (1 \leq s \leq S - 2) \\
\frac{\partial V}{\partial \mathbf{R}_s} & (s = 0, S - 1)
\end{cases}
\]
Space-Time-Ensemble Parallel (STEP) NEB

- Path ensemble method (PEM): Long-time simulation in the framework of kinetic Monte Carlo—molecular kinetics simulation

\[r_b = \left(t_{\text{therm}} + t_{\text{heat}} \exp \left(\frac{\Delta_b}{k_B} \left(\frac{1}{T} - \frac{1}{T_{\text{heat}}} \right) \right) \right)^{-1} \]

\[P_b = \frac{r_b}{r} = \frac{r_b}{\sum_{b=0}^{B-1} r_b} \]

- Space-time-ensemble parallelism (STEP) = spatial decomposition within each state (\(D\) domains)
 - + temporal parallelism across the states within each band (\(S\) states)
 - + band ensemble (\(B\) bands)

- Hierarchical concurrency
 \[P = BSD \]

Divide-&-Conquer Protein Folding

- Levinthal paradox (1968): How the Nature folds an amino-acid sequence into a global energy minimum 3D structure (which is known to be NP complete) within microseconds (~ billion molecular-dynamics steps).

- Sequential KMC not good enough.

Zip-&-assembly algorithm (Ken Dill at UCSF)
1. (Divide) Chop the amino-acid sequence into ~10 residue fragments.
2. (Conquer) For each fragment, perform replica-exchange (~ temperature accelerated) molecular dynamics simulation & detect the formation of any stable hydrophobic contacts.
3. (Combine) Grow the stable fragments by adding surrounding residues while freezing (~ constraint) the found stable contacts.

S.B. Ozkan et al., *PNAS* **104**, 11987 ('07)
Parsing Protein-Folding Routes

Computational linguistics

(1) Formal grammar to describe protein-folding routes
(2) Dynamic programming for an efficient algorithm for the folding routes

K. A. Dill et al., *Polymer* 48, 4289 ('07)
W. Dyrka et al., *Alg. Mol. Biol.* 8, 31 ('13)
Singlet Fission in Amorphous DPT

- Photo-current doubling by splitting a singlet exciton into 2 triplet excitons
- Singlet fission (SF) in mass-produced disordered organic solid → efficient low-cost solar cells
- Exp’l breakthrough: SF found in amorphous diphenyl tetracene (DPT)
- Ultrafast transient absorption measurements identified *two time scales* (1 & 100 ps) for exciton population dynamics
- Hypothesis: Existence of *SF hot spots* [S. T. Roberts *et al.*, *JACS* 134, 6388 (*'12)]

Problem: *Molecular origin of SF hot spots?*
Divide-Conquer-Recombine KMC

- Move up from molecules to microstructures
- Challenge: Unprecedented 10^4-atom NAQMD simulation
- Computational approach: Divide-conquer-recombine (DCR) NAQMD

DCR-NAQMD (phonon-assisted exciton dynamics) + time-dependent perturbation theory (singlet-fission rate) + kinetic Monte Carlo calculations of exciton population dynamics in 6,400-atom amorphous DPT

NAQMD-informed Kinetic Monte Carlo

- NAQMD-KMC exciton population dynamics reproduces the experimentally observed two time scales (~1 & 100 ps) in amorphous DPT

![Graphs showing NAQMD-KMC and Experiment results](image)

W. Mou et al., *APL* **102**, 173301 ('13)

S. T. Roberts *et al.*, *JACS* **134**, 6388 ('12)

Cover image: *Appl. Phys. Lett.* (Apr. 29, '13)