Supplementary Derivations for the Lanczos-Algorithm Lecture

Spectral representation

The eigenvalues and eigenvectors satisfy

\[\sum_{j=1}^{n} A_{ij} q_j^{(\alpha)} = \lambda_{\alpha} q_i^{(\alpha)} = \sum_{\beta=1}^{n} q_i^{(\alpha)} (\lambda_{\rho} \delta_{\beta\alpha}), \]

where \(\delta_{\beta\alpha} = 1 \ (\alpha = \beta); \ 0 \ (\alpha \neq \beta). \)

Define an orthogonal matrix \(Q \) such that its \(\alpha \)-th column is the \(\alpha \)-th eigenvector \(q^{(\alpha)} \), i.e., \(Q = [q^{(1)} q^{(2)} \cdots q^{(n)}] \), and a diagonal matrix \(\Lambda \) such that \(\Lambda_{\beta\alpha} = \lambda_{\rho} \delta_{\beta\alpha} \), and Eq. (1) is reduced to a matrix equation,

\[AQ = QA \Lambda. \]

From the orthonormality of the eigenvector set,

\[(Q^T Q)_{\alpha\beta} = \sum_{i=1}^{n} Q_{i\alpha} Q_{i\beta} = \sum_{i=1}^{n} q_i^{(\alpha)} q_i^{(\beta)} = q^{(\alpha)} \cdot q^{(\beta)} = \delta_{\alpha\beta}, \]

where \(Q^T \) is the transpose of \(Q \). Therefore,

\[Q^T Q = I, \]

where the identity matrix is defined as \(I_{\alpha\beta} = \delta_{\alpha\beta} \). Multiplying \(Q^T \) from the left, then, Eq. (2) becomes

\[Q^T AQ = \Lambda. \]

Variational principle: The best approximation to \(q^{(1)} \) is whatever the vector that makes \(\rho(x; A) \) the smallest.

Once \(q^{(1)} \) is found, the best approximation to \(q^{(2)} \) is whatever the vector \(\{x \mid x \cdot q^{(1)} = 0\} \) that makes \(\rho(x; A) \) the smallest, and so on.

Gram-Schmidt orthogonalization

For a set of un-orthonormalized vectors \(\{s_1, \ldots, s_n\} \), suppose that the first \(i-1 \) vectors have been orthonormalized to form \(\{q_1, \ldots, q_{i-1}\} \), and consider

\[q_i' \leftarrow s_i - \sum_{j=1}^{i-1} q_j (q_j \cdot s_i); \quad q_i \leftarrow q_i' / |q_i'|. \]

Then

\[q_j(\langle i \rangle) \cdot q_i' = q_j \cdot \left[s_i - \sum_{k=1}^{i-1} q_k (q_k \cdot s_i) \right] \]

\[= q_j \cdot s_i - \sum_{k=1}^{i-1} (q_j \cdot q_k)(q_k \cdot s_i) \]

\[= q_j \cdot s_i - \sum_{k=1}^{i-1} \delta_{jk} (q_k \cdot s_i) = 0 \]

i.e., the modified vector is orthogonal to all the low-lying vectors \(q_j \).
Lanczos recursion formula

From the tridiagonality,

\[Aq_i = aq_{i-1} + bq_i + cq_{i+1}. \]
\(Aq_i = aq_{i-1} + bq_i + cq_{i+1}. \)
\(7 \)

\[q_i^T \times (7) \]

\[q_i^T Aq_i = b q_i^T q_i = b \]
\[\therefore b = q_i^T Aq_i \]
\(8 \)

\[q_{i-1}^T \times (7) \]

\[q_{i-1}^T Aq_i = a q_{i-1}^T q_{i-1} = a \]
\[\therefore a = q_{i-1}^T Aq_i = q_i^T Aq_{i-1} \text{(real)} = \beta_{i-1} \quad (i \geq 2) \]
\(9 \)

\[q_{i+1}^T \times (7) \]

\[q_{i+1}^T Aq_i = c q_{i+1}^T q_{i+1} = c \]
\[\therefore c = q_{i+1}^T Aq_i = \beta_i \]
\(10 \)

Lanczos algorithm (last step)

\[||r_i|| = ||\beta_i q_{i+1}|| = \beta_i ||q_{i+1}|| = \beta_i \]