Speeding-up \textit{ab initio} molecular dynamics with hybrid functionals using adaptively compressed exchange operator based multiple timestepping

Cite as: J. Chem. Phys. 151, 151102 (2019); https://doi.org/10.1063/1.5125422
Submitted: 22 August 2019. Accepted: 01 October 2019. Published Online: 17 October 2019

Sagarmoy Mandal, and Nisanth N. Nair

ARTICLES YOU MAY BE INTERESTED IN

Exploring local range separation: The role of spin scaling and one-electron self-interaction
The Journal of Chemical Physics 151, 154108 (2019); https://doi.org/10.1063/1.5121731

In search of Coulson's lost theorem
The Journal of Chemical Physics 151, 151101 (2019); https://doi.org/10.1063/1.5128624

Force balance approach for advanced approximations in density functional theories
The Journal of Chemical Physics 151, 154107 (2019); https://doi.org/10.1063/1.5123608
Speeding-up \textit{ab initio} molecular dynamics with hybrid functionals using adaptively compressed exchange operator based multiple timestepping

ABSTRACT

\textit{Ab initio} molecular dynamics (AIMD) simulations using hybrid density functionals and plane waves are of great interest owing to the accuracy of this approach in treating condensed matter systems. On the other hand, such AIMD calculations are not routinely carried out since the computational cost involved in applying the Hartree–Fock exchange operator is very high. In this work, we make use of a strategy that combines adaptively compressed exchange operator formulation and multiple time step integration to significantly reduce the computational cost of these simulations. We demonstrate the efficiency of this approach for a realistic condensed matter system.

Ab initio molecular dynamics (AIMD) simulations with density functional theory (DFT) and plane wave (PW) basis set are the methods of choice in studying the structural and dynamic properties of condensed matter systems. Usage of density functionals at the level of the Generalized Gradient Approximation (GGA) is commonplace for these simulations because more than a million energy and force evaluations are computationally achievable by taking advantage of parallel programs and parallel computing platforms. Contrarily, hybrid density functionals are preferred over GGA functionals for improved accuracy in AIMD simulations. Computations of energy and gradients at the hybrid functional level using the PW basis set have prohibitively high computational cost resulting from the application of the exact exchange operator on each of the occupied orbitals. One of the ways to increase the efficiency of such AIMD simulations is by making use of multiple time step (MTS) algorithms among others. In this respect, the reversible reference system propagator algorithm (r-RESPA) has been used by several authors. In the r-RESPA MTS approach, artificial time scale separation in the ionic force components due to the computationally intensive Hartree–Fock exchange (HFX) contribution and the computationally cheaper rest of the terms is made. In this manner, the MTS scheme allows us to compute HFX contributions less frequently compared to the rest of the contributions to the force, thereby reducing the overall computational cost in performing AIMD simulations.

Here, we propose a new way to take advantage of the r-RESPA scheme for performing AIMD using hybrid functionals and PWs. This scheme is based on the recently developed adaptively compressed exchange (ACE) operator approach. We exploited some property of the ACE operator to artificially split the ionic forces into fast and slow. The self-consistent field (SCF) solution of hybrid functional based Kohn-Sham (KS) DFT equations requires application of the exchange operator $V_X = - \sum_{j}^{N_{\text{orb}}} \langle \psi_j | \nabla \nabla | \psi_i \rangle$ on each of the KS orbitals $| \psi_i \rangle$.

\begin{equation}
V_X | \psi_i \rangle = - \sum_{j}^{N_{\text{orb}}} \langle \psi_j | \nabla \nabla | \psi_i \rangle, \quad i = 1, \ldots, N_{\text{orb}}.
\end{equation}

Here, N_{orb} is the total number of occupied orbitals. The evaluation of $\langle \psi_j | \nabla \nabla | \psi_i \rangle$ is usually done in reciprocal space using Fourier
transform (FT). If N_G is the total number of PWs, the computational cost for doing FT scales as $N_G \log N_G$ using the fast Fourier transform (FFT) algorithm. The total computational cost scales as $N_{orb}N_G \log N_G$,57 as operation of V_X on all the KS orbitals requires N_{orb} time evaluation of $\langle \psi | (r_{12})^{-1} | \psi \rangle$.

In the recently developed ACE operator formulation,17 the full rank V_X operator is approximated by the ACE operator $V_X^{\text{ACE}} = -\sum_k N_{\text{orb}} |p_k \rangle \langle p_k |$ using a low rank decomposition. Here, $\{|p_k \rangle \}$ is the set of ACE projection vectors which can be computed through a series of simpler linear algebra operations, as explained below.

In matrix notation, V_X^{ACE} can be rewritten as

$$V_X^{\text{ACE}} = PP^T,$$

with $\{|p_k \rangle \}$ being columns of P. Here,

$$P = WL^{-T},$$

where the columns of W are

$$W_i = V_X |\psi_i \rangle, \quad i = 1, \ldots, N_{\text{orb}}.$$

L is a lower triangular matrix computed using the Cholesky factorization of $-M$ as

$$M = -LL^T.$$

Here, the elements of the matrix M are

$$M_{ij} = \langle \psi_i | V_X | \psi_j \rangle.$$ (6)

The evaluation of the action of the V_X^{ACE} operator on KS orbitals can be done with the N_{orb}, number of inner products as

$$V_X^{\text{ACE}} | \psi_i \rangle = -\sum_k N_{\text{orb}} |p_k \rangle \langle p_k | \psi_i \rangle, \quad i = 1, \ldots, N_{\text{orb}}.$$ (7)

The advantage of the ACE approach is that the cost of applying the V_X^{ACE} operator on each KS orbital is much less as compared to the V_X operator. At the first SCF step, the V_X^{ACE} operator can be constructed through the computation of $\{V_X | \psi_i \rangle \}$, which is the costliest step [because of N_{orb} time evaluation of $\langle \psi_i | (r_{12})^{-1} | \psi_i \rangle$. As HFX has only a minor contribution to the total energy, an approximate energy computation is possible by using the previously constructed V_X^{ACE} operator without updating it for the rest of the SCF iterations. It is again stressed that once the V_X^{ACE} operator is constructed, its low rank structure allows the easy computation of $\{V_X^{\text{ACE}} | \psi_i \rangle \}$ in the subsequent SCF iterations. We exploit this property of the ACE operator to combine with the r-RESPA scheme.

In the r-RESPA method, symmetric Trotter factorization of the classical time evolution operator is carried out. Let that ionic force can be decomposed into slow and fast components as $F_K = F_K^{\text{fast}} + F_K^{\text{slow}}$, $K = 1, \ldots, 3N$, for a system containing N atoms. In this case, the Liouville operator L can be written as

$$iL = iL^{\text{fast}} + iL^{\text{slow}},$$

with

$$iL_{1,1}^{\text{fast}} = 3N \sum_k K_x \frac{\partial}{\partial K_x}, \quad iL_{2,2}^{\text{fast}} = 3N \sum_k K_{x'} \frac{\partial}{\partial K_{x'}}$$

and

$$iL_{1,1}^{\text{slow}} = \sum_k \frac{\partial}{\partial P_k} \left(\sum_{k'} f_K^{\text{slow}} \frac{\partial}{\partial P_{k'}} \right).$$ (10)

Here, $\{X_k \}$ and $\{P_k \}$ are the Cartesian coordinates and the conjugate momenta of the particles, respectively. Using symmetric Trotter factorization, we arrive at

$$\exp(iL \Delta t) \approx \exp \left(\frac{iL_{\text{slow}} \Delta t}{2} \right) \exp \left(\frac{iL_{\text{fast}} \delta t}{2} \right) \exp \left(\frac{iL_{\text{fast}} \delta t}{2} \right),$$

Here, the large time step Δt is chosen according to the time scale of variation of slow forces ($\{F_K^{\text{slow}} \}$) and the smaller time step $\delta t = \Delta t/n$ is chosen according to the time scale of fast forces ($\{F_K^{\text{fast}} \}$).

Now, we split the contribution of ionic forces from the HFX part as

$$F_K^{\text{hybrid}} = F_K^{\text{ACE}} + \Delta F_K, \quad K = 1, \ldots, 3N,$$ (12)

with $\Delta F_K = \left(F_K^{\text{hybrid}} - F_K^{\text{ACE}} \right)$. Here, F_K^{hybrid} is the ionic force computed with the full rank exchange operator V_X. The term F_K^{ACE} is the ionic force calculated using the low rank V_X^{ACE} operator. In our approach, we invoke the approximation that $F_{\text{slow}} \equiv F_K^{\text{ACE}}$ and $F_{\text{flow}} \equiv \Delta F$. Here, the longer time step Δt is chosen according to the time scale of variation of the computationally costly slow forces (ΔF), whereas the smaller time step δt is taken as per the time scale of fast forces that are cheaper to compute ($F_{\text{flow}}^{\text{ACE}}$). In this way, we get the required speed-up using the r-RESPA scheme to perform hybrid functional based AIMD simulations.

In Figs. 1(a) and 1(b), we have shown the components of the $F_{\text{flow}}^{\text{ACE}}$ and ΔF for a realistic molecular system, where V_X^{ACE} is calculated once at the beginning of a SCF while kept fixed during the remaining SCF cycles and ΔF is calculated every $n = \Delta t/\delta t$ steps. The magnitude of ΔF is ∼100 times smaller compared to $F_{\text{flow}}^{\text{ACE}}$ (see the supplementary material). Moreover, ΔF computed at every $n = \Delta t/\delta t$ steps is slowly varying. Thus, the artificial time scale separation considered here is reasonable. We emphasize that it is practically difficult to have ΔF resonance-free and thus the total energy conservation may not be fully satisfied. In such cases, efficient thermostats have to be used while performing canonical ensemble simulations to avoid long time energy drifts.20 We note in passing that force-splitting done by differences in forces due to two levels of theory as in Ref. 15 has larger amplitude of oscillation than ΔF constructed using the ACE approach (see the supplementary material). Flowcharts of the method are given in Figs. 2 and 3.

Benchmark calculations were carried out for a 32 water system where the molecules were taken in a supercell of dimensions 9.85 Å × 9.85 Å × 9.85 Å with water density ~1 g cm⁻³. Calculations were carried out employing the CPMD program21 where the proposed method has been implemented. The PBE0 exchange correlation functional was employed together with the norm-conserving Troullier-Martins type pseudopotentials.23 A PW cutoff energy of 80 Ry was used. Born-Oppenheimer molecular dynamics (BOMD)
FIG. 1. Test results for the 32-water system using the PBE0 functional: one of the
cOMPONENTS of F_{ACE} and ΔF on an arbitrarily chosen (a) oxygen and (b) hydrogen
atoms. Here, F_{ACE} and ΔF are calculated at every δt and Δt, respectively. (c)
Comparison of potential energy during VV, MTS-5, and MTS-15 simulations in the
NVE ensemble. (d) $\log_{10}(\Delta E)$ for different Δt values in VV and MTS simulations
calculated from 5 ps long trajectories.

To benchmark our implementation, we first compared the fluc-
tuations in the total energy using the conventional velocity Verlet
(VV) integrator and MTS runs (MTS-n) with $n = \Delta t/\delta t$, and $\delta t = 0.5$
fs for 32-water in a periodic box treated by the PBE0 functional. The
magnitude of the total energy (E) fluctuations is measured by

$$\Delta E = \left| \frac{E - \langle E \rangle}{\langle E \rangle} \right|,$$

where $\langle \ldots \rangle$ specifies the time average. In the case of VV runs,
$\log_{10}(\Delta E)$ increases with higher Δt corresponding to the increase in
total energy fluctuations as shown in Fig. 1(d). We also observed that
the use of a time step greater than 1.4 fs in VV runs leads to unstable
trajectories with breaking of O–H covalent bonds. In MTS-n runs,
we kept the inner time step δt fixed at 0.5 fs and varied outer time
step $\Delta t = n \delta t$. The quality of the energy conservation in these runs

FIG. 2. Flowchart of the MTS propagation scheme proposed in this work.

FIG. 3. Flowchart showing the steps involved in computing F_{ACE}. Here, $\psi^{(i)}$ is the
wavelength at the ith iteration.
depends on the value of n, which determines how large the outer time step is compared to the inner time step. It is clear from Fig. 1(d) that MTS-n runs with n up to 15 have the total energy conservation comparable (to the order of magnitude) to the VV run using a time step 1.4 fs. Although the MTS-30 run (with $\Delta t = 14.4$ fs) was showing higher total energy fluctuation, it was able to generate stable MD trajectories. Notably, we observed good accuracy in MTS runs with $n = 15$ (i.e., MTS-15) (see Table I). The total energy drifts for different NVE runs are reported in the supplementary material.

In order to show the correctness of our proposed MTS scheme, we compared the fluctuation in potential energy for VV, MTS-5, and MTS-15 runs for a short initial time period for the 32-water system (before the trajectories deviate due to growing numerical differences) in Fig. 1(c) (see also Table I). All these simulations were started with the same initial conditions. We find that potential energy computed from the MTS-5 and MTS-15 trajectories is closely following the potential energy from the VV run.

As the next, we carried out NVT simulations for the same system and computed the static and dynamical properties of bulk water. In particular, we calculated partial radial distribution functions (RDFs) and the power spectrum (see Fig. 4). It is clear that the RDFs from the MTS simulations are in excellent agreement with those from the VV run [Figs. 4(a)–4(c)]. In addition, the power spectrum computed from these calculations is in excellent agreement [Fig. 4(d)]. Thus, we conclude that our MTS scheme gives an accurate description of the structural and dynamical properties.

We now compare the average computational time per MD step (t_{CPU}) for MTS-n and VV runs (see Tables I and II). We have achieved a speed-up of ~4 fold for the 32-water system with MTS-5 as compared to the VV run. At the same time, with MTS-15, we could achieve a speed-up of ~7 fold. We have observed a similar speed-up for larger system sizes (see the supplementary material). It is crucial to note that application of the V_X^{ACE} operator at every SCF cycle in place of the exact exchange operator V_X gives a speed-up of ~240 (see Table II). However, construction of the V_X^{ACE} operator, which is done only once in every MD time step, is computationally expensive (and has the same computational cost of applying the exact exchange operator). Thus in this method, construction of V_X^{ACE} remains as the computational bottleneck.

In conclusion, we presented a new scheme in using the r-RESPA to perform hybrid functional based AIMD simulations with the PW basis set. This involves artificial splitting in the nuclear forces envisaged by the recently developed ACE approach. Our benchmark results for liquid water show that stable and accurate MD trajectories can be obtained through this procedure. For the specific case of a 32-water system, a computational speed-up up to 7 could be obtained. We hope that this approach will enable us to compute long accurate AIMD trajectories at the level of hybrid DFT. Systematic improvements can be further made to speed up this approach, in particular, using localized orbitals for the construction of the ACE operator, while these are beyond the scope of this work.

TABLE I. Comparison of various quantities for VV, MTS-5, and MTS-15 simulations in the NVE ensemble.

<table>
<thead>
<tr>
<th>Method</th>
<th>$\log_{10}(\Delta E)$</th>
<th>$\Delta U/(\text{a.u.})$</th>
<th>$t_{CPU}/(s)$</th>
<th>Speed-upd</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV</td>
<td>-6.8</td>
<td>0.0</td>
<td>258</td>
<td>1</td>
</tr>
<tr>
<td>MTS-5</td>
<td>-5.4</td>
<td>5.9×10^{-4}</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>MTS-15</td>
<td>-5.2</td>
<td>1.9×10^{-3}</td>
<td>38</td>
<td>7</td>
</tr>
</tbody>
</table>

aCalculated using Eq. (12) over 5 ps long trajectories.

bThe average absolute deviation of potential energy in MTS-n runs from the VV run: $\Delta U = \{U^{\text{VV}} - U^{\text{MTS-n}}\}$. Here, $U^{\text{VV/MTS-n}}$ is the potential energy at any time during VV/MTS-n run. This average is calculated over 1000 MD steps.

cAverage computational time per MD step (averaged over 500 MD steps) performed using identical 120 processors.

dSpeed-up is the ratio of t_{CPU} for VV and MTS-n runs.
See the supplementary material for the comparison of fast and slow force components, total energy drift, and benchmark for larger system sizes.

The authors acknowledge the HPC facility at the Indian Institute of Technology Kanpur (IITK) for the computational resources. S.M. thanks the University Grant Commission (UGC), India, for his Ph.D. fellowship. S.M. is grateful to Mr. Banshi Das (IITK) for his help in generating the power spectrum.

REFERENCES

21. J. Hutter *et al.*, CPMD: An *Ab Initio* Electronic Structure and Molecular Dynamics Program, see HTTP://WWW.CPMD.ORG.