Neutral Territory Decomposition for Parallel MD

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

Spatial (Half-Shell) vs. NT Decompositions

Locus of interaction (2-dimensional example)

NT = hybrid spatial (data) & force (computation) decomposition with well-designed order/layout

Import regions or communication volume (2-dimensional example)

HS

\[4bR + \pi R^2 \xrightarrow{b \to 0} \text{const.} \]

NT

\[4bR \xrightarrow{b \to 0} 0 \]
3D Import Regions

HS
NT
Tower
Plate
Scaling of Import Regions

Equation:

\[
\frac{N}{P} \sim 800
\]

Methods:
- HS
- NT
- SH
- SNT

Number of Processors:
- 64
- 512
- 4K
- 32K

Values:
- HS: 100, 10, 1
- NT: 100, 10, 1
- SH: 10, 1
- SNT: 10, 1

Marc Snir
Scaling of the Volume of Import Regions

HS decomposition

\[V_i = O\left(R^3\right) \]

NT decomposition

\[V_i = O\left(R^{3/2} p^{-1/2}\right) \]

Communication time

\[T_{\text{comm}} = t_{\text{latency}} N_{\text{message}} + \frac{1}{b_{\text{bandwidth}}} V_{\text{message}} \]

\(ns \sim \text{many } \mu s \)
Combine NT with ...

Cache-oblivious recursive blocking?

Cache-Oblivious Algorithms

EXTENDED ABSTRACT SUBMITTED FOR PUBLICATION. FOCS99

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139
{athena,cel,prokop,sridhar}@supertech.lcs.mit.edu

Recursive Blocked Algorithms
and Hybrid Data Structures for
Dense Matrix Library Software

Erik Elmroth†
Fred Gustavson‡
Isak Jonsson†
Bo Kågström†
Combine NT with ...

Optimal data/computation layout (on Cell, GPU, multicore,...)?

Improving Memory Hierarchy Performance for Irregular Applications*

John Mellor-Crummey†, David Whalley‡, Ken Kennedy†

† Department of Computer Science, MS 132
Rice University
6100 Main
Houston, TX 77005
{johnmc,ken}@cs.rice.edu

‡ Computer Science Department
Florida State University
Tallahassee, FL 32306-4530
whalley@cs.fsu.edu
phone: (850) 644-3506

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2001

Analysis of the Clustering Properties of the Hilbert Space-Filling Curve

Bongki Moon, H.V. Jagadish, Christos Faloutsos, Member, IEEE, and
Joel H. Saltz, Member, IEEE

Metrics and Models for Reordering Transformations

Morton or Hilbert?

G.M. Morton, “A computer oriented geodetic data base & a new technique in file sequencing,”
IBM Tech. Report (’66)

Hypergraph
Reactive Molecular Dynamics (RMD)

- Dynamic n-tuple computation: $n \leq 4$ explicitly; ≤ 6 through bond order

$$f_i^{(n)} = - \sum_{\forall (r_0, ..., r_{n-1}) \in \Gamma^{(n)}} \frac{\partial}{\partial x_i} \Phi_n(x_0, ..., x_{n-1}) \bigg|_{(x_0, ..., x_{n-1})=(r_0, ..., r_{n-1})}$$

(a) $n=2$ (b) $n=3$ (c) $n=4$

Shift-Collapse (SC) Algorithm

- Generalization of Shaw’s eighth-cell method (non-owner-compute method on high-latency cluster) for pair computation to general dynamic range-limited \(n \)-tuples

M. Kunaseth et al., *IEEE/ACM Supercomputing* (SC13)

Full-shell (FS) method [e.g. Rappaport, ’88]

Half-shell (HS) method [e.g. Rappaport, ’88]

Eighth-shell (ES) method [Bower et al., ’06]
Shift-Collapse (SC) Performance

Runtime comparison on 48 Intel-Xeon nodes and 64 Blue Gene/Q nodes

- SC-MD is always faster than FS-MD
- At the smallest grain, SC-MD is 9.7- and 5.1-fold speedups over the state-of-the-art hybrid linked-cell and neighbor list code
- Crossover of optimal algorithm from SC-MD to hybrid MD at larger granularity (i.e. $N/P > 2,095$ on Intel Xeon and $N/P > 425$)

M. Kunaseth et al., IEEE/ACM Supercomputing (SC13)