Intel Xeon Phi Programming

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

Goal: Multithreading on Intel Xeon Phi
Two Supercomputing Parties in the US

Titan: Oak Ridge Nat’l Lab
- 17.6 Petaflop/s
- AMD Opteron + NVIDIA K20x

Aurora: Argonne Nat’l Lab (2019)
- 180-450 Petaflop/s
- Intel Xeon Phi

GPU vs. Phi
Intel Xeon Phi Processors

Current Knights Landing (KNL) is a predecessor of the Knights Hill (KNH) processor in Aurora
Knights Landing (KNL)

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM: 400+; DDR: 90+

VPU: Vector processing unit
MCDRAM: Multi-channel dynamic random access memory (4× bandwidth of DRAM)
• Standard MPI+OpenMP programming is supported
• Should utilize fast on-chip MCDRAM (multi-channel dynamic random access memory) shared by 72 cores
• Should take advantage of AVX-512 (512-bit or 8 double-precision) SIMD operations on vector processing units (VPUs)