Order-Invariant Real Number Summation:
Circumventing Accuracy Loss
for Multimillion Summands
on Multiple Parallel Architectures

Patrick E. Small, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta
Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California
Email: (patrices, rkalia, anakano, priyav)@usc.edu

IEEE International Parallel & Distributed Processing Symposium (IPDPS)
Chicago, IL
May 24, 2016
Hierarchy of Atomistic Simulation Methods

Molecular Dynamics (MD)

\[
m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\frac{\partial}{\partial \mathbf{r}_i} E_{\text{MD}}(\{\mathbf{r}_i\})
\]

Quantum MD (QMD)

\[
\min E_{\text{QM}}(\{\psi_n(\mathbf{r})\})
\]

- **Adaptive**

Reactive MD (RMD)

- **First principles-based reactive force-fields**
 - **Reactive bond order** \(\{BO_{ij}\}\)
 - Bond breakage & formation
 - **Charge equilibration (QEq)** \(\{q_i\}\)
 - Charge transfer

[Brenner; Streit & Mintmire; van Duin & Goddard; Vashishta et al.]
Scalable Simulation Algorithm Suite

- 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO$_2$
- 67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
- 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores
Exascale Computing Challenge

1. Scalability beyond million-way parallelism

Divide-conquer-recombine (DCR) algorithmic framework
Metascalable ("design once, scale on future architectures")

J. Chem. Phys. 140, 18A529 ('14)
IEEE/ACM SC14
IEEE Computer 48(11), 33 ('15)

2. Reproducibility of real-number summation for multimillion summands & beyond in the global sum; double-precision arithmetic began to produce different results on different high-end architectures

Divide-and-conquer

Range-limited n-tuple computations

ACM/IEEE SC13
Reproducibility Challenge

- **Rounding (truncation) error makes floating-point addition non-associative**

 ![Graph showing standard deviation of sum with random summation orders for double precision.](Image)

 ![Graph showing distribution of sum with random summation orders for double precision.](Image)

 Exact (current work)

 Standard deviation of sum with random summation orders

 Distribution of sum with random summation orders

- **Sum becomes a random walk across the space of possible rounding error**
Related Works

- **General-purpose arbitrary precision arithmetic**
 [GNU-MPL ’12]
 → Extensive computation & memory usage

- **Error-compensation methods**
 > Error-free transformation for tracking residuals
 [Priest, ’91, Higham ’93, Rump ’09, Demmel ’13]
 → Complex implementation
 > Summation reordering for minimizing error
 [Hel ’01]
 → Prohibitive at large scales

- **Hardware solutions**
 [Gustafson ’15]
 → Not available yet

- **Higher-precision intermediate sums**
 [He ’01, Hallberg ’14]
 → Simple implementation, low overhead
Contributions

• Propose an extension of the order-invariant, higher-precision intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 (’14)]:

(1) Improves performance* for large (> 10^6) number of summands

(2) Eliminates the aliasing problem of the original method

• The new method outperforms the previous state-of-the-art for large problems involving million+ summands on broad systems (MPI, OpenMP, CUDA/GPU, Xeon Phi)

*Performance is defined as the computational speed
Hallberg Order-Invariant Sum

• Integer representation with higher accuracy: Represent a real number r using a set of N 64-bit signed integers, a_i ($i = 0, N-1$); M (< 63) is a positive integer

$$r = \sum_{i=0}^{N-1} a_i 2^{(i-N/2)M} = 2^{-NM/2} \left(a_0 + a_1 2^M + a_2 2^{2M} + \cdots \right)$$

• Order-invariant parallel sum: Two real numbers are added by summing N pairs of corresponding integers concurrently

• Carry out (potential sequential dependence): When any of the integer additions exceeds 2^M, carry out must be added to the next integer in the set

• Carry-overhead reduction: Carry operations are avoided up to $P = 2^{63-M-1}$ summands to expose high parallelism

R. Hallberg & A. Adcroft, Par. Comput. 40, 140 ('14)
Drawback of Hallberg Sum

- **Overhead:** Not all integer bits serve to provide real-number precision; $63-M$ bits per integer are dedicated to book-keeping

- **Aliasing:** Multiple integer representations could represent the same real number

- **Normalization & sum overheads:** to convert the integer representation back to real
High-Precision (HP) Method

• The proposed variation of Hallberg method represents a real number r using a set of N 64-bit unsigned integers, a_i ($i = 0, N-1$)

$$r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}$$

$$= a_0 2^{64(N-k-1)} + \cdots + a_{N-k-1} 2^{64(N-k)} + a_{N-k} 2^{-64k} + \cdots + a_{N-1} 2^{-64k}$$

• k is the number of 64-bit unsigned integers assigned to represent the fractional portion of r ($0 \leq k \leq N$), whereas $N-k$ integers represent the whole-number component

• Negative number is represented by two’s complement in integer representation, using only 1 bit
HP Algorithm (1): Conversion

• **Simple procedure:** A single pass converts a double-precision number \(r \) to HP integers \(a_i \) & translates them to two’s complement

\[
r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}
\]

```c
dtmp = fabs(r)*2^{64*(N-k-1)};
isneg = (r < 0.0);
for (i=0; i<N-1; i++) {
    itmp = (uint64_t)dtmp;
    dtmp = (dtmp - (double)itmp)*2^{64};
    a[i] = (isneg) ? ~itmp + (dtmp<=0.0) : itmp;
}
a[N-1] = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp;
```

• **Inverse of this algorithm** converts HP number back to double-precision
HP Algorithm (2): Addition

• Addition of two HP numbers, \(a \leftarrow a + b \)

\[
\begin{align*}
 r_1 &= \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \\
 r_2 &= \sum_{i=0}^{N-1} b_i 2^{64(N-k-i-1)}
\end{align*}
\]

```plaintext
a[N-1] = a[N-1]+b[N-1];
co = (a[N-1]<b[N-1]);
for (i=N-2; i>=1; i--) {
    a[i] = a[i]+b[i]+co;
    co = (a[i]==b[i]) ? co : (a[i]<b[i]);
}
a[0] = a[0]+b[0]+co;
```

• Overflow of the sum is detected by comparing the signs of the summands with that of the sum
Algorithm 1

Express as sum of integers

- $5 \times 2^0 + 12 \times 2^{-4}$
- $(3 \times 2^0 + 4 \times 2^{-4})$

Apply 2's complement

- $12 \times 2^0 + 12 \times 2^{-4}$

Sum right to left

- $0101 + 1100 = 1100$
- $1100 + 1 = 1101$

Final carry-out is ignored

- $0010 = 2 \times 2^0$
- $1000 = 8 \times 2^{-4}$

Scale integers by their powers and sum

- $(2.5)^{-1}$
Representation Power

- **Maximum range & smallest representable HP number**

\[r_{HP} = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(k)</th>
<th>Bits</th>
<th>Maximum range</th>
<th>Smallest number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>128</td>
<td>(\pm 9.223372 \times 10^{18})</td>
<td>(5.421011 \times 10^{-20})</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>192</td>
<td>(\pm 9.223372 \times 10^{18})</td>
<td>(2.938736 \times 10^{-39})</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>256</td>
<td>(\pm 3.138551 \times 10^{57})</td>
<td>(1.593092 \times 10^{-58})</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>512</td>
<td>(\pm 5.789604 \times 10^{76})</td>
<td>(8.636169 \times 10^{-78})</td>
</tr>
</tbody>
</table>

- **Equivalency with Hallberg representation power**

\[r_{Hallberg} = \sum_{i=0}^{N-1} a_i 2^{(i-N/2)M} \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(M)</th>
<th>Precision bits</th>
<th>Max summands</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>52</td>
<td>520</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>516</td>
<td>1 M</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>518</td>
<td>64 M</td>
</tr>
</tbody>
</table>
HP Method: Properties

• Invariance of sum with respect to both summation order & architecture is guaranteed with appropriate setting of N & k to provide sufficient accuracy

• Overflow & underflow can be readily detected at runtime at double-precision (DP)-to-HP conversion, HP-sum & HP-to-DP conversion steps

• Atomicity of addition (which is essential for multithreading) is guaranteed using only the widely available compare-&-swap (CAS) synchronization primitive
Performance

- Computing time of real-number sum using the current (HP) & Hallberg methods as a function of # of summands

- HP sum is faster than Hallberg sum over million summands
Performance Analysis

- Speedup of HP sum over Hallberg sum as a function of the number of summands

\[T_{\text{HP}} = c_{\text{HP}} \left\lceil \frac{b + 1}{64} \right\rceil \]

\[T_{\text{Hallberg}} = c_{\text{Hallberg}} \left\lceil \frac{b}{M} \right\rceil \]

\[\text{Speedup} \sim \frac{c_{\text{Hallberg}}}{c_{\text{HP}}} \cdot \frac{64b}{M(b + 65)} \geq \frac{32c_{\text{Hallberg}}}{c_{\text{HP}}} \cdot \frac{1}{M} \]

\[2^{63-M} \propto \#\text{summands} \]

b: Precision bit count
Performance Projection

• HP sum is faster than Hallberg sum for larger numbers of summands & higher precision
Parallel Efficiency with OpenMP

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of OpenMP threads on Xeon

- Higher parallel efficiency of HP & Hallberg sums over double-precision sum
Parallel Efficiency with MPI

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of MPI processes on Xeon

Higher parallel efficiency of HP & Hallberg sums over double-precision sum
Parallel Efficiency on GPGPU

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of CUDA threads on general-purpose graphics processing unit (GPGPU)

- Faster speed of HP sum (7 reads & 6 writes on global memory) over Hallberg sum (11 reads & 10 writes)
Parallel Efficiency on Xeon Phi

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of threads on Intel Xeon Phi co-processor

32 million summands

- Faster speed of HP sum over Hallberg sum
Large Production Simulations

• 16,661-atom quantum molecular dynamics (QMD) simulation on 786,432 IBM Blue Gene/Q cores suggests a rapid H₂-production technology that is industrially scalable
 21,140 time steps (129,208 self-consistent-field iterations);
 Nano Lett. **14**, 4090 (’14)

• Up-to 6,400-atom divide-conquer-recombine nonadiabatic QMD simulation reaches experimental time scales from first principles for photoexcitation dynamics
 Appl. Phys. Lett. **102**, 173301 (’13);
 Sci. Rep. **5**, 19599 (’16)

• 112 million-atom reactive molecular dynamics (RMD) simulation on 786,432 IBM Blue Gene/Q cores reveals a simple synthetic pathway to fractal graphene
 Sci. Rep. **6**, 24109 (’16)
Percolation Transition

Movie made by J. Insley (Argonne)
Billion-Atom Molecular Dynamics

- Shock-induced nanobubble collapse in water near silica surface (67 million core-hours of computing on 163,840 Blue Gene/P cores)
 A. Shekhar et al., Phys. Rev. Lett. 111, 184503 ('13)

- Hypervelocity impact on AlN
 P. S. Branicio et al., Phys. Rev. Lett. 96, 065502 ('06)
Conclusion

1. An order-invariant real-number summation method has been proposed for reproducible parallel computing.

2. The proposed method achieves higher computing speed than the previous state-of-the-art for million+ summands on various parallel systems (MPI, OpenMP, CUDA, Xeon Phi).

Thank You

Research supported by DOE Grant DE-SC0014607