Order-Invariant Real Number Summation: Circumventing Accuracy Loss for Multimillion Summands on Multiple Parallel Architectures

Patrick E. Small, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta
Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: (patrices, rkalia, anakano, priyav)@usc.edu

Proc. IEEE International Parallel & Distributed Processing Symposium, IPDPS, p. 152 (’16)
1. Scalability for billion-way parallelism

Divide-conquer-recombine (DCR) algorithmic framework

Metascalable (“design once, scale on future architectures”)

2. Reproducibility of real-number summation for multibillion summands in the global sum; double-precision arithmetic began to produce different results on different high-end architectures
Reproducibility Challenge

- Rounding (truncation) error makes floating-point addition non-associative

• Sum becomes a random walk across the space of possible rounding error
High-Precision (HP) Method

• Propose an extension of the order-invariant, higher-precision intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 (’14)]

• The proposed variation represents a real number \(r \) using a set of \(N \) 64-bit unsigned integers, \(a_i \) \((i = 0, N-1) \)

\[
\begin{align*}
 r &= \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \\
 &= a_0 2^{64(N-k-1)} + \cdots + a_{N-k-1} \underbrace{2^{-64}}_{N-k} + \cdots + a_{N-k} 2^{-64} + \cdots + a_{N-1} 2^{-64k}
\end{align*}
\]

• \(k \) is the number of 64-bit unsigned integers assigned to represent the fractional portion of \(r \) \((0 \leq k \leq N) \), whereas \(N-k \) integers represent the whole-number component

• Negative number is represented by two’s complement in integer representation, using only 1 bit

P. E. Small et al., IEEE IPDPS 2016
Performance Projection

- HP sum is faster than Hallberg sum for higher precision & larger numbers of summands

\[
\text{Speedup(HP/Hallberg) > 1}
\]

\[
\text{Speedup(HP/Hallberg) < 1}
\]

P. E. Small et al., IEEE IPDPS 2016
Hierarchy of Atomistic Simulation Methods

Molecular Dynamics (MD)

Reactive MD (RMD)

Nonadiabatic quantum MD (NAQMD)

First principles-based reactive force-fields

- Reactive bond order \(\{BO_{ij}\} \)
 \(\rightarrow \) Bond breakage & formation

- Charge equilibration (QEq) \(\{q_i\} \)
 \(\rightarrow \) Charge transfer

Tersoff, Brenner, Sinnott et al.; Streitz & Mintmire et al.; van Duin & Goddard (ReaxFF)
Scalable Simulation Algorithm Suite

- 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO₂
- 67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
- 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores
1. **Scalability** beyond million-way parallelism

Divide-conquer-recombine (DCR) algorithmic framework
Metascalable (“design once, scale on future architectures”)

2. **Reproducibility** of real-number summation for multimillion summands & beyond in the global sum; double-precision arithmetic began to produce different results on different high-end architectures
Reproducibility Challenge

- Rounding (truncation) error makes floating-point addition non-associative

- Sum becomes a random walk across the space of possible rounding error

Graphs showing:
- Standard deviation of sum with random summation orders
- Distribution of sum with random summation orders

Double precision

- Exact (current work)
- Standard deviation of sum with random summation orders
- Distribution of sum with random summation orders
Related Works

• General-purpose arbitrary precision arithmetic
 [GNU-MPL ’12]
 → Extensive computation & memory usage

• Error-compensation methods
 > Error-free transformation for tracking residuals
 [Priest, ’91, Higham ’93, Rump ’09, Demmel ’13]
 → Complex implementation
 > Summation reordering for minimizing error
 [Hel ’01]
 → Prohibitive at large scales

• Hardware solutions
 [Gustafson ’15]
 → Not available yet

• Higher-precision intermediate sums
 [He ’01, Hallberg ’14]
 → Simple implementation, low overhead
Contributions

• Propose an extension of the order-invariant, higher-precision intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 (’14)]:

 (1) Improves performance* for large (> 10^6) number of summands

 (2) Eliminates the aliasing problem of the original method

• The new method outperforms the previous state-of-the-art for large problems involving million+ summands on broad systems (MPI, OpenMP, CUDA/GPU, Xeon Phi)

*Performance is defined as the computational speed
Hallberg Order-Invariant Sum

• Integer representation with higher accuracy: Represent a real number \(r \) using a set of \(N \) 64-bit signed integers, \(a_i \) \((i = 0, N-1)\); \(M (< 63) \) is a positive integer

\[
r = \sum_{i=0}^{N-1} a_i 2^{i-N} 2^M = 2^{-NM/2} (a_0 + a_1 2^M + a_2 2^{2M} + \ldots)
\]

• Order-invariant parallel sum: Two real numbers are added by summing \(N \) pairs of corresponding integers concurrently

• Carry out (potential sequential dependence): When any of the integer additions exceeds \(2^M \), carry out must be added to the next integer in the set

• Carry-overhead reduction: Carry operations are avoided up to \(P = 2^{63-M-1} \) summands to expose high parallelism

R. Hallberg & A. Adcroft, *Par. Comput.* 40, 140 (’14)
Drawback of Hallberg Sum

- **Overhead:** Not all integer bits serve to provide real-number precision; $63-M$ bits per integer are dedicated to book-keeping.

- **Aliasing:** Multiple integer representations could represent the same real number.

- **Normalization & sum overheads:** Overheads to convert the integer representation back to real.
High-Precision (HP) Method

• The proposed variation of Hallberg method represents a real number \(r \) using a set of \(N \) 64-bit unsigned integers, \(a_i \) (\(i = 0, N-1 \))

\[
r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}
\]

\[
= a_0 2^{64(N-k-1)} + \cdots + a_{N-k-1} + a_{N-k} 2^{-64} + \cdots + a_{N-1} 2^{-64k}
\]

• \(k \) is the number of 64-bit unsigned integers assigned to represent the fractional portion of \(r \) (\(0 \leq k \leq N \)), whereas \(N-k \) integers represent the whole-number component

• Negative number is represented by two’s complement in integer representation, using only 1 bit
HP Algorithm (1): Conversion

- **Simple procedure:** A single pass converts a double-precision number r to HP integers a_i & translates them to two’s complement

\[
r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}
\]

dtmp = fabs(r) * 2^{64*(N-k-1)};
isneg = (r < 0.0);
for (i=0; i<N-1; i++) {
 itmp = (uint64_t)dtmp;
 dtmp = (dtmp - (double)itmp) * 2^{64};
 a[i] = (isneg) ? ~itmp + (dtmp<=0.0) : itmp;
}
a[N-1] = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp;

- **Inverse of this algorithm converts HP number back to double-precision**
HP Algorithm (2): Addition

- **Addition of two HP numbers,** \(a \leftarrow a + b \)

\[
\begin{align*}
 r_1 &= \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \\
 r_2 &= \sum_{i=0}^{N-1} b_i 2^{64(N-k-i-1)}
\end{align*}
\]

\[a[N-1] = a[N-1]+b[N-1]; \]
\[co = (a[N-1]<b[N-1]); \]
\[\text{for } (i=N-2; i>=1; i--) \{ \]
 \[a[i] = a[i]+b[i]+co; \]
 \[co = (a[i]==b[i]) ? co : (a[i]<b[i]); \]
\[\} \]
\[a[0] = a[0]+b[0]+co; \]

- **Overflow of the sum is detected by comparing the signs of the summands with that of the sum**
HP Sum: Example

Algorithm 1

1. Express as sum of integers:
 - $5 \times 2^0 + 12 \times 2^{-4}$
 - $0101 + 1100$

2. Apply 2's complement:
 - $-(3 \times 2^0 + 4 \times 2^{-4})$
 - $0011 - 0100$
 - $12 \times 2^0 + 12 \times 2^{-4}$
 - $1100 + 1100$

Algorithm 2

1. Sum right to left:
 - $0101 + 1100$
 - $1100 + 1100$
 - $1100 + 1000$

2. Scale integers by their powers and sum:
 - $2 \times 2^0 = 1100$
 - $8 \times 2^{-4} = 1000$

Final carry-out is ignored.

$(Algorithm 1)^{-1}$

Result: 2.5
Representation Power

- Maximum range & smallest representable HP number

\[r_{HP} = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(k)</th>
<th>Bits</th>
<th>Maximum range</th>
<th>Smallest number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>128</td>
<td>±9.223372×10^{18}</td>
<td>5.421011×10^{-20}</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>192</td>
<td>±9.223372×10^{18}</td>
<td>2.938736×10^{-39}</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>256</td>
<td>±3.138551×10^{57}</td>
<td>1.593092×10^{-58}</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>512</td>
<td>±5.789604×10^{76}</td>
<td>8.636169×10^{-78}</td>
</tr>
</tbody>
</table>

- Equivalency with Hallberg representation power

\[r_{Hallberg} = \sum_{i=0}^{N-1} a_i 2^{(i-\frac{N}{2})M} \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(M)</th>
<th>Precision bits</th>
<th>Max summands</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>52</td>
<td>520</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>516</td>
<td>1 M</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>518</td>
<td>64 M</td>
</tr>
</tbody>
</table>
HP Method: Properties

- Invariance of sum with respect to both summation order & architecture is guaranteed with appropriate setting of N & k to provide sufficient accuracy.

- Overflow & underflow can be readily detected at runtime at double-precision (DP)-to-HP conversion, HP-sum & HP-to-DP conversion steps.

- Atomicity of addition (which is essential for multithreading) is guaranteed using only the widely available compare-&-swap (CAS) synchronization primitive.
Performance

• Computing time of real-number sum using the current (HP) & Hallberg methods as a function of # of summands

• HP sum is faster than Hallberg sum over million summands
Performance Analysis

- Speedup of HP sum over Hallberg sum as a function of the number of summands

\[T_{\text{HP}} = c_{\text{HP}} \left[\frac{b + 1}{64} \right] \quad T_{\text{Hallberg}} = c_{\text{Hallberg}} \left[\frac{b}{M} \right] \]

\[\text{Speedup} \sim \frac{c_{\text{Hallberg}}}{c_{\text{HP}}} \cdot \frac{64b}{M(b + 65)} \geq \frac{32c_{\text{Hallberg}}}{c_{\text{HP}}} \cdot \frac{1}{M} \]

\[2^{63-M} \propto \#\text{summands} \]

\(b \): Precision bit count
Performance Projection

- HP sum is faster than Hallberg sum for larger numbers of summands & higher precision

\[
\text{Speedup(HP/Hallberg)} > 1
\]

\[
\text{Speedup(HP/Hallberg)} < 1
\]
Parallel Efficiency with OpenMP

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of OpenMP threads on Xeon

32 million summands

- Higher parallel efficiency of HP & Hallberg sums over double-precision sum
Parallel Efficiency with MPI

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of MPI processes on Xeon

- Higher parallel efficiency of HP & Hallberg sums over double-precision sum
Parallel Efficiency on GPGPU

• Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of CUDA threads on general-purpose graphics processing unit (GPGPU)

32 million summands

• Faster speed of HP sum (7 reads & 6 writes on global memory) over Hallberg sum (11 reads & 10 writes)
Parallel Efficiency on Xeon Phi

- Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of threads on Intel Xeon Phi coprocessor

- Faster speed of HP sum over Hallberg sum
Large Production Simulations

- **16,661-atom quantum molecular dynamics (QMD) simulation on 786,432 IBM Blue Gene/Q cores suggests a rapid H₂-production technology that is industrially scalable**

 21,140 time steps (129,208 self-consistent-field iterations);
 Nano Lett. **14**, 4090 (’14)

- **Up-to 6,400-atom divide-conquer-recombine nonadiabatic QMD simulation reaches experimental time scales from first principles for photoexcitation dynamics**

 Appl. Phys. Lett. **102**, 173301 (’13);
 Sci. Rep. **5**, 19599 (’16)

- **112 million-atom reactive molecular dynamics (RMD) simulation on 786,432 IBM Blue Gene/Q cores reveals a simple synthetic pathway to fractal graphene**

 Sci. Rep. **6**, 24109 (’16)
Percolation Transition

Movie made by J. Insley (Argonne)
Billion-Atom Molecular Dynamics

- **Hypervelocity impact on AlN**

 P. S. Branicio et al., *Phys. Rev. Lett.* **96**, 065502 ('06)

- **Shock-induced nanobubble collapse in water near silica surface** (67 million core-hours of computing on 163,840 Blue Gene/P cores)

 A. Shekhar et al., *Phys. Rev. Lett.* **111**, 184503 ('13)

• Shock-induced nanobubble collapse in water near silica surface (67 million core-hours of computing on 163,840 Blue Gene/P cores)

 A. Shekhar et al., *Phys. Rev. Lett.* **111**, 184503 ('13)
Conclusion

1. An order-invariant real-number summation method has been proposed for reproducible parallel computing

2. The proposed method achieves higher computing speed than the previous state-of-the-art for million+ summands on various parallel systems (MPI, OpenMP, CUDA, Xeon Phi)

Thank You

Research supported by DOE Grant DE-SC0014607