Parallel Quantum Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological Sciences
University of Southern California

Email: anakano@usc.edu
Parallel Computing Hardware

- **Processor**: Executes arithmetic & logic operations
- **Memory**: Stores program & data (stored program computer)
- **Communication interface**: Performs signal conversion & synchronization between communication link & a computer
- **Communication link**: A wire capable of carrying a sequence of bits as electrical (or optical) signals

See http://cacs.usc.edu/education/cs596.html
Communication Network

Mesh (torus)

IBM Blue Gene/Q (5D torus)

Crossbar switch

NEC Earth Simulator (640x640 crossbar)
History of Supercomputers

Early ’40s: ENIAC by Presper Eckert & John Mauchly at Univ. of Pennsylvania—First general-purpose electronic computer

’76: Cray 1 by Seymour Cray—beginning of vector supercomputer era

Late 80’s: massively parallel computers such as the Thinking Machines CM-2

(’71: Intel 4004— invention of microprocessor)
Merge of PC & Supercomputers

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>Rmax [TFlop/s]</th>
<th>Rpeak [TFlop/s]</th>
<th>Power [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National Supercomputing Center in WuXi China</td>
<td>Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCP</td>
<td>10,649,600</td>
<td>93,014.6</td>
<td>125,435.9</td>
<td>15,371</td>
</tr>
<tr>
<td>2</td>
<td>National Super Computer Center in Guangzhou China</td>
<td>Tianhe-2 (MilkyWay-2) - TH-NVI-FFP Cluster, Intel Xeon E5-2692 12C 2.00GHz, TH Express-2, Intel Xeon Phi 3151P NUDT</td>
<td>3,120,000</td>
<td>33,862.7</td>
<td>54,902.4</td>
<td>17,808</td>
</tr>
<tr>
<td>3</td>
<td>Swiss National Supercomputing Centre (CSCS) Switzerland</td>
<td>Piz Daint - Cray XC50, Xeon E5-2690V3 12C 2.66GHz, Aries interconnect, NVIDIA Tesla P100</td>
<td>361,760</td>
<td>19,590.0</td>
<td>25,326.3</td>
<td>2,272</td>
</tr>
<tr>
<td>4</td>
<td>Japan Agency for Marine-Earth Science and Technology Japan</td>
<td>Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.33GHz, Infiniband EDR, PEZY-SC2 700MHz ExaScaler</td>
<td>19,860,000</td>
<td>19,135.8</td>
<td>26,192.0</td>
<td>1,350</td>
</tr>
<tr>
<td>5</td>
<td>DOE/SC/Oak Ridge National Laboratory United States</td>
<td>Titan - Cray XK7, Opteron 6274 16C 2.20GHz, Cray Gemini interconnect, NVIDIA K20x</td>
<td>560,640</td>
<td>17,590.0</td>
<td>27,112.5</td>
<td>8,209</td>
</tr>
</tbody>
</table>

Theoretical performance

Measured performance (in Tflop/s)

Flop/s = floating-point operations/second

M (mega) = 10^6
G (giga) = 10^9
T (Tera) = 10^{12}
P (Peta) = 10^{15}
X (Exa) = 10^{18}

http://www.top500.org (November '17)

- **USC-HPC**: 13,440 cores, 0.62 Pflop/s
- **CACS**: 4,096 cores
- **CACS-INCITE**: 200M core-hours/year on 786,432-core 8.6 Pflop/s Blue Gene/Q at Argonne Nat’l Lab

See lecture on “Beowulf clusters”
TaihuLight

256 cores/Sunway SW26010 processor \times 40,960 = 10,485,760 cores

93 petaflop/s TaihuLight
#include "mpi.h"
#include <stdio.h>
main(int argc, char *argv[]) {
 MPI_Status status;
 int myid;
 int n;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 if (myid == 0) {
 n = 777;
 MPI_Send(&n, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
 }
 else {
 MPI_Recv(&n, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 printf("n = %d\n", n);
 }
 MPI_Finalize();
}
Single Program Multiple Data (SPMD)

Process 0
if (myid == 0) {
 n = 777;
 MPI_Send(&n,...);
}
elself {
 MPI_Recv(&n,...);
 printf(...);
}

Process 1
if (myid == 0) {
 n = 777;
 MPI_Send(&n,...);
}
eles {
 MPI_Recv(&n,...);
 printf(...);
}

Parallel computing: Specifies “Who does what”
Multicore Processors

- Multiple simple processors (or cores) sharing common memory

Intel 80-core chip 1.01 teraflop/s @62W

Intel core i9

ASCI Red ('97) Teraflop/s @1MW

CACS PS3 cluster

Peng et al., Euro-Par 2008

Cell Broadband Engine

Dursun et al., Par. Proc. Lett. 19, 535 ('09)
Scalability study of molecular dynamics simulation on Godson-T many-core architecture

Liu Peng a,*, Guangming Tan b,*, Rajiv K. Kalia a, Aiichiro Nakano a, Priya Vashishta a, Dongrui Fan b, Hao Zhang b, Fenglong Song b

a Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089, USA
b Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
```c
#include <stdio.h>
#include <omp.h>
void main () {
    int nthreads,tid;
    nthreads = omp_get_num_threads();
    printf("Sequential section: # of threads = %d\n",nthreads);
    /* Fork multi-threads with own copies of variable */
    #pragma omp parallel private(tid)
    {
        /* Obtain & print thread id */
        tid = omp_get_thread_num();
        printf("Parallel section: Hello world from thread %d\n",tid);
        /* Only master thread does this */
        if (tid == 0) {
            nthreads = omp_get_num_threads();
            printf("Parallel section: # of threads = %d\n",nthreads);
        }
    } /* All created threads terminate */
}
```

- **Obtain the number of threads & my thread ID**
- **By default, all variables are shared unless selectively changing storage attributes using private clauses**

http://www.openmp.org
Each MPI process spawns multiple OpenMP threads

- MPI processes communicate by sending/receiving messages
- OpenMP threads communicate by writing to/reading from shared variables
SIMD Vectorization: MD

- Single-instruction multiple-data (SIMD) parallelism using vector registers

(Example) Zero padding to align complex data in molecular dynamics

Original solution

```
for (i=0; i<N; i++)
    for (a=0; a<3; a++)
        r[i][a] = r[i][a] + DeltaT*rv[i][a];
```

SIMD solution

```
for (i=0; i<N; i++)
    for (a=0; a<3; a++)
        r[i][a] = r[i][a] + DeltaT*rv[i][a];
```

Peng et al., PDPTA 2009; UCHPC 2010; J. Supercomputing 57, 20 ('11)
SIMD Vectorization: LBM

- Translocated statement fusion in lattice-Boltzmann flow simulation

Original solution

```c
for(i=0;i<3;i++){
    u[i]=0.0; rho=0.0;
    for(l=0;l<18;l++){
        fi[l] = f[18*cnz+1];
        u[i] += fi[l]*v[l][i];
        rho += fi[l];
    }
}
```

SIMD solution

```
for(i=0;i<3;i++){
    u[i] = u[i] + fi[l]*v[l][i];
    rho = rho + fi[l];
}
```

3×18×5 = 270 computation

SIMDizable mathematical formulations:
Special relativity, quaternion, etc.

\[
J^\alpha = (c\rho, j^1, j^2, j^3) \\
A^\alpha = (\phi/c, A^1, A^2, A^3) \\
\square A^\alpha = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) A^\alpha = \frac{4\pi}{c} J^\alpha
\]

18×4 = 72 computation

Ideal Speedup 3.5
Massive SIMD Data Parallelism

Quantum dynamics on 8,192-processor (128 × 64) MasPar 1208B

See lecture on “pre-Beowulf parallel computing”
Parallel Molecular Dynamics

Spatial decomposition (short ranged): $O(N/P)$ computation

Atom caching: $O((N/P)^{2/3})$

Atom migration

See also “parallel quantum dynamics” lecture
History of Particle Simulations

’44 John von Neumann memo on a stored-program computer: “Our present analytical methods seem unsuitable for the solution of the important problems arising in connection with nonlinear partial differential equations. The really efficient high-speed computing devices may provide us with those heuristic hints which are needed in all parts of mathematics for genuine progress”

’53 First Monte Carlo simulation of liquid by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller on MANIAC at Los Alamos Nat’l Lab

’55 Enrico Fermi, John Pasta, and Stanislaw Ulam studied the dynamics of an one-dimensional array of particles coupled by anharmonic springs on MANIAC

’56 Dynamics of hard spheres (billiards) studied by Alder and Wainwright at the Lawrence Livermore Nat’l Lab.

’60 Radiation damage in crystalline Cu studied with short-range repulsion and uniform attraction toward the center by George Vineyard’s group at Brookhaven Nat’l Lab

’64 First MD simulation of liquid (864 argon atoms) using interatomic potentials by Aneesur Rahman at the Argonne Nat’l Lab on a CDC 3600
Moore’s Law in Scientific Computing

Number of particles in MD simulations has doubled:
• Every 19 months in the past 50 years for classical MD
• Every 22 months in the past 30 years for DFT-MD

2014: 10^{12}-atom MD & 10^8-electron DFT on a 10 petaflop/s Blue Gene/Q with advances in algorithmic & parallel-computing techniques
Tunable Hierarchical Cellular Decomposition

Mapping $O(N)$ divide-&-conquer algorithms onto memory hierarchies

- Spatial decomposition with data “caching” & “migration”
- Computational cells (e.g. linked-list cells in MD) < cell blocks (threads) < processes (P_{π}, spatial decomposition subsystems) < process groups (P_γ, Grid nodes)
- Multilayer cellular decomposition (MCD) for n-tuples ($n = 2$–6)
- Tunable cell data & computation structures: Data/computation reordering & granularity parameterized at each decomposition level
- Tunable hybrid MPI + OpenMP + SIMD implementation

Nomura et al., IPDPS 2009
Floating-point operation/L2 cache miss trade-off:
331,776-atom silica MRMD on 1.4GHz Pentium III

MPI/OpenMP parallelism trade-off:
8,232,000-atom silica MRMD & 290,304-atom RDX F-ReaxFF on 8-way 1.5 GHz Power4

<table>
<thead>
<tr>
<th>Number of OpenMP threads, n_{td}</th>
<th>Number of MPI processes, n_p</th>
<th>Execution time/MD time step (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>4.19 MRMD</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5.75</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8.60</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>12.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>P-ReaxFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.5</td>
<td></td>
<td>58.9</td>
</tr>
<tr>
<td>54.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatially Compact Thread Scheduling

Concurrency-control mechanism: Data privatization

- **Reduced memory:** $\Theta(nq) \rightarrow \Theta(n+n^{2/3}q^{1/3})$
- **Strong scaling parallel efficiency 0.9** on quad quad-core AMD Opteron
- **2.6× speedup** over MPI by hybrid MPI+OpenMP on 32,768 IBM Blue Gene/P cores

M. Kunaseth et al., PDPTA’11; J. Supercomput. (’13)
Concurreny-Control Mechanisms

A number of concurrency-control mechanisms (CCMs) are provided by OpenMP to coordinate multiple threads:

- **Critical section**: Serialization
- **Atomic update**: Expensive hardware instruction
- **Data privatization**: Requires large memory $\Theta(nq)$
- **Hardware transactional memory**: Rollbacks (on IBM Blue Gene/Q)

CCM performance varies:

- Depending on computational characteristics of each program
- In many cases, CCM degrades performance significantly

Goal: Provide a guideline to choose the “right” CCM
Hardware Transactional Memory

Transactional memory (TM): An opportunistic CCM

- Avoids memory conflicts by monitoring a set of speculative operations (i.e. transaction)
- If two or more transactions write to the same memory address, transaction(s) will be restarted—a process called rollback
- If no conflict detected in the end of a transaction, operations within the transaction becomes permanent (i.e. committed)
- Software TM usually suffers from large overhead

Hardware TM on IBM Blue Gene/Q:

- The first commercial platform implementing TM support at hardware level via multiversioned L2-cache
- Hardware support is expected to reduce TM overhead
- Performance of HTM on molecular dynamics has not been quantified
Strong-Scaling Benchmark for MD

1 million particles on 64 Blue Gene/Q nodes with 16 cores per node

Developed a fundamental understanding of CCMs:

- OMP-critical has limited scalability on larger number of threads \((q > 8)\)
- Data privatization is the fastest, but it requires \(\Theta(nq)\) memory
- Fused HTM performs the best among constant-memory CCMs

M. Kunaseth et al., PDSEC’13
Threading Guideline for Scientific Programs

Focus on minimizing runtime (best performance):

- Have enough memory → data privatization
- Conflict region is small → OMP-critical
- Small amount of updates → OMP-atomic
- Conflict rate is low → HTM
- Other → OMP-critical* (poor performance)

<table>
<thead>
<tr>
<th>Concurrency control mechanism</th>
<th>Parallel efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMP-critical</td>
<td>(e = \min\left(\frac{1}{pf_{CR}}, 1\right))</td>
</tr>
<tr>
<td>OMP-atomic</td>
<td>(e = \frac{t_{total}}{t_{total} + m\mu c_{atomic}})</td>
</tr>
<tr>
<td>Data privatization</td>
<td>(e = \frac{t_{total}}{t_{total} + c_{reduction}n \log p})</td>
</tr>
<tr>
<td>HTM</td>
<td>(e = \frac{t_{total}}{t_{total} + m(c_{HTM_overhead} + \mu c_{HTM_update})})</td>
</tr>
</tbody>
</table>

M. Kunaseth et al., PDSEC’13
IEEE PDSEC Best Paper Award

Performance Characteristics of Hardware Transactional Memory for Molecular Dynamics Application on BlueGene/Q
Manaschai Kunaseth, Rajiv Kalia, Aiichiro Nakano, Priya Vashishta, David Richards, James Giosli

The 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC-13), held in Boston, Massachusetts, USA, May 24, 2013.
GPU Programming: CUDA

- **Compute Unified Device Architecture**

- **Integrated host (CPU) + device (GPU) application programming interface based on C language developed at NVIDIA**

- **CUDA homepage**

- **Compilation**

 $ \text{nvcc } \text{pi.cu}$

- **Execution**

 $ \text{a.out}$

 PI = 3.141593
CUDA Computing

Copy: Host → Device

Input

Multithreading (SPMD):
big loop
__global__ void kernel_fun()

Copy: Host ← Device

Output

See http://cacs.usc.edu/education/cs596.html
Grid Computing

- **World Wide Web**: Universal interface to digital library on the Internet
- **Information Grid**: Pervasive (from any place in the world at any time) access to everything (computing, mass storage, experimental equipments, distributed sensors, *etc.*, on high-speed networks)
Global Collaborative Simulation

Multiscale MD/QM simulation on a Grid of distributed PC clusters in the US & Japan

- Task decomposition (MPI Communicator) + spatial decomposition
- MPICH-G2/Globus

Japan: Yamaguchi—65 P4 2.0GHz
Hiroshima, Okayama, Niigata—3×24 P4 1.8GHz

US: Louisiana—17 Athlon XP 1900+

MD — 91,256 atoms
QM (DFT) — 76n atoms on n clusters

- Scaled speedup, $P = 1$ (for MD) + $8n$ (for QM)
- Efficiency = 94.0% on 25 processors over 3 PC clusters

Kikuchi et al. IEEE/ACM SC02
Internode Optimization

- Communication bottleneck in metacomputing on a Grid

![Diagram showing communication bottleneck with time, force calculation, 6-step caching, and asynchronous messages between P0 USC and P1 USC in Japan.]
Grid-Enabled MD Algorithm

Grid MD algorithm:
1. asynchronous receive of cells to be cached `MPI_Irecv`
2. send atomic coordinates in the boundary cells
3. compute forces for atoms in the inner cells
4. wait for the completion of the asynchronous receive `MPI_Wait`
5. compute forces for atoms in the boundary cells

Renormalized Messages:
Latency can be reduced by composing a large cross-site message instead of sending all processor-to-processor messages

[Diagram showing cached, boundary, and inner cells]

[Diagram showing communication between USC and Japan]
Sustainable Grid Supercomputing

- Sustained (> months) supercomputing (> 10^3 CPUs) on a Grid of geographically distributed supercomputers
- Hybrid Grid remote procedure call (GridRPC) + message passing (MPI) programming
- Dynamic allocation of computing resources on demand & automated migration due to reservation schedule & faults

Ninf-G GridRPC: ninf.apgrid.org; MPICH: www.mcs.anl.gov/mpi

Multiscale QM/MD simulation of high-energy beam oxidation of Si

Takemiya et al., IEEE/ACM SC06
Song et al., IJCS (’09)
Grid Remote Procedure Call (RPC)

- Simple RPC API (application program interface)
- Existing libraries & applications into Grid applications
- IDL (interface definition language) embodying call information, with minimal client-side management

```c
double A[n][n], B[n][n], C[n][n];  /* Data Declaration */
dmmul(n, A, B, C);  /* Call local function */
grpc_function_handle_default(&hdl, "dmmul");
grpc_call(hdl, n, A, B, C);  /* Call server side routine */
```

- **Ninf–G Grid RPC system**
 http://ninf.apgrid.org
US-Japan Grid Testbed

Phase 1
Phase 2
Phase 3
Phase 4

USC

No. of CPUs
No. of QM Atoms
Fault Tolerance

- Automated migration in response to unexpected faults
Current & Future Computing Platforms

- Won two DOE supercomputing awards to develop & deploy metascalable ("design once, scale on future platforms") simulation algorithms (2017-2020)

- NAQMD & RMD simulations on full 800K cores

Innovative & Novel Computational Impact on Theory & Experiment

Title: "Petascale Simulations for Layered Materials Genome"

Principal Investigator: Aiichiro Nakano, University of Southern California
Co-Investigator: Priya Vashishta, University of Southern California

786,432-core IBM Blue Gene/Q

Early Science Projects for Aurora
Supercomputer Announced
Metascalable layered materials genome
Investigator: Aiichiro Nakano, University of Southern California

- One of 10 exclusive users of the next-generation DOE supercomputer

Nation’s first exaflop/s computer, Intel A21 (2021)
USC@A21 in the Global Exascale Race

SUPERCOMPUTING

Design for U.S. exascale computer takes shape

Competition with China accelerates plans for next great leap in supercomputing power

By Robert F. Service

In 1957, the launch of the Sputnik satellite vaulted the Soviet Union to the lead in the space race and galvanized the United States. U.S. supercomputer researchers are today facing their own pace reflects a change of strategy by DOE officials last fall. Initially, the agency set up a “two lanes” approach to overcoming the challenges of an exascale machine, in particular a potentially ravenous appetite for electricity that could require the output of a small nuclear plant.

Lemont, Illinois. That’s 2 years earlier than planned. “It’s a pretty exciting time,” says Aichiro Nakano, a physicist at the University of Southern California in Los Angeles who uses supercomputers to model materials made by layering stacks of atomic sheets like graphene.
BES
BASIC ENERGY SCIENCES
EXASCALE REQUIREMENTS REVIEW
An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

16,611-atom quantum molecular dynamics
Shimamura et al., Nano Lett. 14, 4090 (’14)

Billion-atom reactive molecular dynamics
But...

Need *metascaleable* (or “design once, scale on new architectures”) parallel applications

Proposed divide-conquer-recombine

Divide-and-conquer

Range-limited \(n\)-tuple computations

M. Kunaseth *et al.*, ACM/IEEE SC13 (’13)
Divide-Conquer-Recombine (DCR) Engines

- **Lean divide-and-conquer density functional theory (LDC-DFT) algorithm** minimizes the prefactor of $O(N)$ computational cost

- **Extended-Lagrangian reactive molecular dynamics (XRMD) algorithm** eliminates the speed-limiting charge iteration

See lecture on “shift-collapse” algorithm
Divide-Conquer-(Re)combine

• “The first was to never accept anything as true which I could not accept as obviously true. The second was to divide each of the problems in as many parts as I should to solve them. The third, beginning with the simplest and easiest to understand matters, little by little, to the most complex knowledge. And the last resolution was to make my enumerations so complete and my reviews so general that I could be assured that I had not omitted anything.” (René Descartes, *Discourse on Method*, 1637)

• 「モデルの分割—再統合の方法の優れた点は、分割した要素的概念を、モデルの理解に役立つように再構成することができ、そこに創造の入り込む余地があるという点にある。」（福井謙一, *学問の創造*, 1987）

Kenichi Fukui [Nobel Chemistry Prize, ’98]
Scalable Simulation Algorithm Suite

- 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO$_2$
- 67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
- 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores
Divide-amp;Conquer Density Functional Theory

- **Overlapping spatial domains:** $\Omega = \bigcup_\alpha \Omega_\alpha$
- **Domain Kohn-Sham equations**

$$ \left(-\frac{1}{2} \nabla^2 + \hat{V}_{\text{ion}} + \hat{V}_{\text{H,xc}}[\rho_{\text{global}}(r)] \right) \psi_n^\alpha(r) = \epsilon_n^\alpha \psi_n^\alpha(r) $$

- **Global & domain electron densities**

$$ \rho_{\text{global}}(r) = \sum_\alpha p_\alpha(r) \rho_\alpha(r) \quad \rho_\alpha(r) = \sum_n [\psi_n^\alpha]^2 \Theta(\mu - \epsilon_n^\alpha) $$

Domain support function
$$ \sum_\alpha p_\alpha(r) = 1 $$

Global chemical potential
$$ N = \int dr \rho_{\text{global}}(r) $$

Global-local self-consistent field (SCF) iteration
Optimization of Divide-&-Conquer DFT

- Computational parameters of DC-DFT = domain size (l) + buffer thickness (b)

- Complexity analysis to optimize the domain size l

$$l_* = \arg\min (T_{\text{comp}}(l)) = \arg\min \left(\frac{L}{l} \right)^3 (l + 2b)^3 \nu = \frac{2b}{\nu - 1}$$

Per-domain computational complexity of DFT = $O(n^\nu)$: $\nu = 2$ or 3 ($n < \text{or} > 10^3$)

- Error analysis: Buffer thickness b is dictated by the accuracy requirement

$$b = \lambda \ln \left(\max \{|\Delta \rho_\alpha(\mathbf{r})| : \mathbf{r} \in \partial \Omega_\alpha \} \right) / \varepsilon \langle \rho_\alpha(\mathbf{r}) \rangle$$

Decay length $\rho_\alpha(\mathbf{r}) - \rho_{\text{global}}(\mathbf{r})$ Error tolerance
cf. quantum nearsightedness [Kohn, Phys. Rev. Lett. 76, 3168 ('96)]
Lean Divide-&-Conquer (LDC) DFT

- Density-adaptive boundary potential to reduce the $O(N)$ prefactor

\[
\nu^\text{bc}_\alpha (r) = \int d r' \frac{\partial \nu (r')}{\partial \rho (r')} \left(\rho_\alpha (r) - \rho_\text{global} (r) \right) \approx \frac{\rho_\alpha (r) - \rho_\text{global} (r)}{\xi}
\]

- More rapid energy convergence of LDC-DFT compared with nonadaptive DC-DFT

- Factor 2.03 (for $n = 2$) ~ 2.89 (for $n = 3$) reduction of the computational cost with an error tolerance of 5×10^{-3} a.u. (per-domain complexity: n^ν)

F. Shimojo et al., J. Chem. Phys. 140, 18A529 ('14);
Hierarchical Computing

- Globally scalable (real-space multigrid) + locally fast (plane wave) electronic solver
 \[\hat{V}_{\text{H,xc}}[\rho_{\text{global}}(\mathbf{r})] \]
 \[\{\psi_{n}^{\alpha}(\mathbf{r})\} \]

- Hierarchical band (i.e. Kohn-Sham orbital) + space + domain (BSD) decomposition

Parallel Efficiency

Parallel computing = solving a big problem (W) in a short time (T) using many processors (P)

- **Execution time:** $T(W,P)$
 - W: Workload
 - P: Number of processors

- **Speed:**
 \[S(W,P) = \frac{W}{T(W,P)} \]

- **Speedup:**
 \[S_P = \frac{S(W_P,P)}{S(W_1,1)} = \frac{W_P T(W_1,1)}{W_1 T(W_P,P)} \]

- **Efficiency:**
 \[E_P = \frac{S_P}{P} = \frac{W_P T(W_1,1)}{P W_1 T(W_P,P)} \]

How to scale W_P with P?

[See](http://cacs.usc.edu/education/cs596-lecture.html)
Fixed Problem-Size (Strong) Scaling

Solve the same problem faster

\(W_P = W \) — constant (strong scaling)

- **Speedup:**
 \[
 S_P = \frac{W_P T(W_1,1)}{W_1 T(W_P,P)} = \frac{T(W,1)}{T(W,P)}
 \]

- **Efficiency:**
 \[
 E_P = \frac{T(W,1)}{PT(W,P)}
 \]

- **Amdahl’s law:** \(f \) (= sequential fraction of the workload) limits the asymptotic speedup

\[
T(W,P) = fT(W,1) + \frac{(1-f)T(W,1)}{P}
\]

\[
\therefore S_P = \frac{T(W,1)}{T(W,P)} = \frac{1}{f + (1-f)/P}
\]

\[
\therefore S_P \to \frac{1}{f} \quad (P \to \infty)
\]
Isogranular (Weak) Scaling

Solve a larger problem within the same time duration

\[W_p = Pw \text{ (weak scaling)} \]
\[w = \text{constant workload per processor (granularity)} \]

- **Speedup:**
 \[
 S_P = \frac{S(P \cdot w, P)}{S(w, 1)} = \frac{P \cdot w / T(P \cdot w, P)}{w / T(w, 1)} = \frac{P \cdot T(w, 1)}{T(P \cdot w, P)}
 \]

- **Efficiency:**
 \[
 E_P = \frac{S_P}{P} = \frac{T(w, 1)}{T(P \cdot w, P)}
 \]
Analysis of Parallel MD

- Parallel execution time:
 Workload \propto Number of atoms, N (linked-list cell algorithm)

\[
T(N,P) = T_{\text{comp}}(N,P) + T_{\text{comm}}(N,P) + T_{\text{global}}(P)
\]

\[
= a \frac{N}{P} + b \left(\frac{N}{P} \right)^{2/3} + c \log P
\]
Fixed Problem-Size Scaling

- **Speedup:**

\[
S_P = \frac{T(N,1)}{T(N,P)} = \frac{aN}{aN/P + b(N/P)^{2/3} + c \log P}
\]

- **Efficiency:**

\[
E_P = \frac{S_P}{P} = \frac{1}{1 + \frac{b\left(\frac{P}{N}\right)^{1/3}}{a} + \frac{c \cdot P \log P}{a \cdot N}}
\]

pmd.c: \(N = 16,384 \), on HPC
Isogranular Scaling of Parallel MD

• \(n = \frac{N}{P} = \text{constant} \)

• Efficiency:

\[
E_P = \frac{T(n,1)}{T(nP,P)} = \frac{an}{an + bn^{2/3} + c \log P} = \frac{1}{1 + \frac{b}{a} n^{-1/3} + \frac{c}{an} \log P}
\]

pmd.c: \(\frac{N}{P} = 16,384 \), on HPC
Parallel Performance of QXMD

- Weak-scaling parallel efficiency is 0.984 on 786,432 Blue Gene/Q cores for a 50,331,648-atom SiC system
- Strong-scale parallel efficiency is 0.803 on 786,432 Blue Gene/Q cores

- 62-fold reduction of time-to-solution [441 s/SCF-step for 50.3M atoms] from the previous state-of-the-art [55 s/SCF-step for 102K atoms, Osei-Kuffuor et al., PRL ’14]

K. Nomura et al., IEEE/ACM Supercomputing, SC14 ('14)
BLASification

- **Transform from band-by-band to all-band computations** to utilize a matrix-matrix subroutine (DGEMM) in the level 3 basic linear algebra subprograms (BLAS3) library.

- **Algebraic transformation of computations**

 Example: Nonlocal pseudopotential operation

 \[
 \hat{V}_{nl}|\psi_{n}^{\alpha}\rangle = \sum_{i}^{N_{\text{atom}}} \sum_{ij}^{L_{\text{max}}} \langle \beta_{i,l} | D_{ij,l} | \beta_{j,l} | \psi_{n}^{\alpha} \rangle \quad (n = 1, ..., N_{\text{band}})
 \]

 \[
 \Psi = [|\psi_{1}^{\alpha}, ..., |\psi_{N_{\text{band}}}^{\alpha}|] \quad \tilde{B}(i) = [|\beta_{i,1}, ..., |\beta_{i,N_{\text{atom}}}|] \quad [\tilde{D}(i,j)]_{I,J} = D_{ij,l} \delta_{IJ}
 \]

 \[
 \hat{V}_{nl} \Psi = \sum_{i,j}^{L} \tilde{B}(i) \tilde{D}(i,j) \tilde{B}(j)^T
 \]

- **50.5%** of the theoretical peak FLOP/s performance on 786,432 Blue Gene/Q cores (entire Mira at the Argonne Leadership Computing Facility).

- **55%** of the theoretical peak FLOP/s on Intel Xeon E5-2665

 K. Nomura *et al.*, *IEEE/ACM Supercomputing, SC14* (’14)
• **BLAS3**: $q = \text{flop/memory access} = (\text{block size})^{1/2}$

• **Molecular dynamics**: $q = O(n^2)/O(n) = O(n: \text{block size})$

> Use of SIMD (single instruction multiple data) instructions on Cell, multicore (SSE)?
1. Scalability for billion-way parallelism

Divide-conquer-recombine (DCR) algorithmic framework
Metascalable (“design once, scale on future architectures”)

2. Reproducibility of real-number summation for multibillion summands in the global sum; double-precision arithmetic began to produce different results on different high-end architectures
Reproducibility Challenge

- Rounding (truncation) error makes floating-point addition non-associative

- Sum becomes a random walk across the space of possible rounding error
High-Precision (HP) Method

- Propose an extension of the order-invariant, higher-precision intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 (‘14)]

- The proposed variation represents a real number r using a set of N 64-bit unsigned integers, a_i ($i = 0, N-1$)

$$r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}$$

$$= a_0 2^{64(N-k-1)} + \cdots + a_{N-k-1} + \cdots + a_{N-k} 2^{-64} + \cdots + a_{N-1} 2^{-64k}$$

- k is the number of 64-bit unsigned integers assigned to represent the fractional portion of r ($0 \leq k \leq N$), whereas $N-k$ integers represent the whole-number component

- Negative number is represented by two’s complement in integer representation, using only 1 bit

P. E. Small et al., IEEE IPDPS 2016
Performance Projection

- HP sum is faster than Hallberg sum for higher precision & larger numbers of summands

Higher Precision

More Massive Sum

\[
\text{Speedup}(\text{HP}/\text{Hallberg}) > 1
\]

\[
\text{Speedup}(\text{HP}/\text{Hallberg}) < 1
\]

P. E. Small et al., IEEE IPDPS 2016
U.S. National Initiatives

Materials Genome Initiative for Global Competitiveness

June 2011

- **MGI** will accelerate materials developments using data sciences
- **NSCI** will merge exaflop/s (10^{18} floating-point operations per second) high performance computing (HPC) & exabyte (10^{18} bytes) “big data” to advance the frontier of sciences, economic growth & national security
QM/NN(TN) on A21?

- Sequential QM-machine learning (ML) molecular dynamics

- Concurrent nonadiabatic quantum-neural-network (NN) molecular dynamics with accelerators?

- **NAQMD augmented w/ tensor network (TN)?** [Orus, *Ann. Phys.* 349, 117 (‘14)]