Consider a periodic solid with the unit cell, \((a, b, c)\).

The periodic potential, \(V(r)\), can be expanded as

\[
V(r) = \sum_{\mathbf{G}} V_{\mathbf{G}} \exp \left(i \mathbf{G} \cdot r \right)
\]

where

\[
V_{\mathbf{G}} = \frac{1}{\Omega} \int d\mathbf{r} V(r) \exp \left(-i \mathbf{G} \cdot \mathbf{r} \right)
\]

and the reciprocal vector is

\[
\mathbf{G} = \frac{2\pi}{\Omega} \left[m_1 (b \times c) + m_2 (c \times a) + m_3 (a \times b) \right] \quad (m_1, m_2, m_3 \in \mathbb{Z})
\]

and \(\Omega = a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)\) is the unit-cell volume.
Bloch's Theorem

Assume that the unit cell is repeated \(M \times M \times M \) times, and we solved the Schrödinger equation,

\[
\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E \psi(\mathbf{r})
\]

in this "supercell".

We can expand the wave function as

\[
\psi(\mathbf{r}) = \sum_{\mathbf{k}} a_{\mathbf{k}} \exp \left(i\mathbf{k} \cdot \mathbf{r} \right)
\]

where

\[
a_{\mathbf{k}} = \frac{1}{M^2 \Omega} \int_{M^3 \Omega} d\mathbf{r} \psi(\mathbf{r}) \exp \left(-i \mathbf{k} \cdot \mathbf{r} \right)
\]

and

\[
\mathbf{k} = \frac{2\pi}{M^2 \Omega} \left[m_1 \mathbf{M} (\mathbf{b} \times \mathbf{e}) + m_2 \mathbf{M} (\mathbf{c} \times \mathbf{a}) + m_3 \mathbf{M} (\mathbf{a} \times \mathbf{b}) \right]
\]

\[
= \frac{2\pi}{\Omega} \left[\frac{m_1}{M} (\mathbf{b} \times \mathbf{e}) + \frac{m_2}{M} (\mathbf{c} \times \mathbf{a}) + \frac{m_3}{M} (\mathbf{a} \times \mathbf{b}) \right]
\]

Substituting Eq. (5) in (4),

\[
\sum_{\mathbf{k}} \frac{\hbar^2}{2m} a_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} + \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} \sum_{\mathbf{k}} a_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} = E \sum_{\mathbf{k}} a_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}}
\]

\[
= \sum_{\mathbf{k}} \sum_{\mathbf{G}} V_{\mathbf{G}} a_{\mathbf{k}-\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}
\]

\[\vdots\]

\[
\sum_{\mathbf{k}} \left[\frac{\hbar^2}{2m} a_{\mathbf{k}} + \sum_{\mathbf{G}} V_{\mathbf{G}} a_{\mathbf{k}-\mathbf{G}} - E a_{\mathbf{k}} \right] e^{i\mathbf{k} \cdot \mathbf{r}} = 0
\]
Therefore k* components that are connected by the lattice reciprocal vectors, G, are coupled.

We can therefore label the eigenstates by \(k \) modulo \(G \), or \(k \) in the first Brillouin zone. An eigenstate can then be expressed as

\[
\psi_{k \mathbf{r}} = \sum_G a_G \exp\left[i(k + G) \cdot \mathbf{r}\right] \quad \text{for } k \text{ in 1st Brillouin zone} \tag{9}
\]

\[
= e^{ik \cdot \mathbf{r}} \sum_G a_G \exp(iG \cdot \mathbf{r}) \tag{10}
\]

\[
= e^{ik \cdot \mathbf{r}} u(\mathbf{r}) \tag{11}
\]

where \(u(\mathbf{r}) \) is periodic and \(k \) is in the 1st Brillouin zone.
Schrödinger Equation in Momentum Space

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi_{kr}(r) = E \psi_{kr}(r) \tag{12}
\]

\[
\psi_{kr}(r) = \sum_{G} a_{kr+G} e^{i \cdot (k + G) \cdot r} \tag{13}
\]

Substituting Eq. (13) in (12),

\[
\sum_{G} \frac{\hbar^2}{2m} |k + G|^2 a_{kr+G} e^{i \cdot (k + G) \cdot r} + \sum_{G} V_{G'} e^{i \cdot G' \cdot r} a_{kr+G} e^{i \cdot (k + G) \cdot r} = E \sum_{G} a_{kr+G} e^{i \cdot (k + G) \cdot r}
\]

\[
\sum_{G} V_{G'} a_{kr+G} e^{i \cdot (k + G + G') \cdot r} = \sum_{G} V_{G} e^{i \cdot G' \cdot r} a_{kr+G} e^{i \cdot (k + G) \cdot r}
\]

\[
= \sum_{G} V_{G} a_{kr+G} e^{i \cdot (k + G) \cdot r}
\]

\[
= \sum_{G} V_{G} a_{kr+G} e^{i \cdot (k + G) \cdot r}
\]

\[
\therefore \frac{\hbar^2}{2m} |k + G|^2 a_{kr+G} + \sum_{G} V_{G} a_{kr+G} = E a_{kr+G} \tag{14}
\]