Eigensystems

We will discuss matrix diagonalization algorithms in *Numerical Recipes* in the context of the eigenvalue problem in quantum mechanics,

\[A|n\rangle = \lambda_n |n\rangle, \tag{1} \]

where \(A \) is a real, symmetric Hamiltonian operator and \(|n\rangle \) is the \(n \)-th eigenvector with eigenvalue \(\lambda_n \).

In an \(N \)-dimensional vector space, Eq. (1) becomes

\[\sum_{j=1}^{N} A_{ij} x_j^{(n)} = \lambda_n x_i^{(n)}, \tag{2} \]

where \(A \) is an \(N \times N \) matrix, and \(x_i^{(n)} \) is the \(i \)-th element of the \(n \)-th eigenvector \(x^{(n)} \in \mathbb{R}^N \).

ORTHONORMAL BASIS

(Orthogonality) The basis set \(\{ |n\rangle \}_{n=1,\ldots,N} \) can be made orthonormal, i.e.,

\[\langle m|n \rangle = \sum_{j=1}^{N} x_j^{(m)} x_j^{(n)} = \delta_{mn}, \tag{3} \]

or, by defining the transformation matrix \(U \) as

\[U_{in} = x_i^{(n)} \tag{4} \]

(i.e., the \(n \)-th column of \(U \) is the \(n \)-th eigenvector), \(U \) is orthogonal,

\[U^TU = I \tag{5} \]

where \(I \) is the \(N \times N \) identity matrix.

Proof of Eq. (3): First note that all eigenvalues \(\lambda_n \) are real. (\(\because \) By multiplying eq. (1) by \(\langle n| \) from the left, \(\langle n|A|n \rangle = \lambda_n \langle n|n \rangle \). For a Hermitian matrix (and of course for a real, symmetric matrix), \(\langle n|A|n \rangle \) is real, and \(\langle n|n \rangle \) is also real since its complex conjugate is itself.) Next, by multiplying Eq. (1) by \(\langle m| \) from the left, we obtain

\[\langle m|A|n \rangle = \lambda_n \langle m|n \rangle. \tag{6} \]

Similarly,

\[\langle n|A|m \rangle = \lambda_m \langle n|m \rangle. \tag{7} \]

By taking the complex conjugate of Eq. (7) and noting the reality of the eigenvalue,

\[\langle m|A|n \rangle = \lambda_m \langle m|n \rangle. \tag{8} \]

Subtracting Eq. (8) from Eq. (6),

\[0 = (\lambda_n - \lambda_m) \langle m|n \rangle. \tag{9} \]

If \(\lambda_n \neq \lambda_m \), Eq. (9) requires that \(\langle m|n \rangle = 0 \). On the other hand, if \(\lambda_n = \lambda_m \), we can still make them orthogonal without modifying the eigenvalue. For example, Gram-Schmidt orthogonalization procedure
\[|n'\rangle \leftarrow |n\rangle - |m\rangle \langle m|n\rangle \quad (10) \]

makes \(\langle m|n'\rangle = \langle m|n\rangle - \langle m|m\rangle \langle m|n\rangle = \langle m|n\rangle - \langle m|n\rangle = 0 \), followed by the normalization \(|n'\rangle \) as \(|n'\rangle \leftarrow |n'\rangle/\langle n'|n'\rangle^{1/2} \).

(Completeness) The orthonormal basis set \(\{|n\rangle\} \) is also complete, i.e., in the \(N \)-dimensional vector space,

\[\sum_{n=1}^{N} |n\rangle \langle n| = 1 \quad (11) \]

is the identity operator. Equivalently,

\[\sum_{n=1}^{N} x_{i}^{(n)} x_{j}^{(n)} = \delta_{ij} \quad (12) \]

or

\[UU^{T} = I \quad (13) \]

Equation (11) states that any vector in the \(N \)-dimensional vector space \(|\psi\rangle \) is a linear combination of the \(N \) basis functions,

\[|\psi\rangle = \sum_{n=1}^{N} |n\rangle \langle n|\psi\rangle \quad (14) \]

since there are only \(N \) linearly independent vectors in this vector space.

The orthogonality and completeness together states that

\[U^{T}U = UU^{T} = I \quad (15) \]

or

\[U^{-1} = U^{T} \quad (16) \]

ORTHOGONAL TRANSFORMATION

Now, we use the orthogonal matrix \(U \) to restate the matrix eigenvalue problem. To do so, multiply Eq. (2) by \(x_{i}^{(m)} \) and sum the resulting equation over \(i \),

\[\sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} x_{j}^{(n)} = \lambda_{n} \sum_{i=1}^{N} x_{i}^{(m)} x_{i}^{(n)} = \lambda_{n} \delta_{mn} \quad (17) \]

where we have used the orthonormality, Eq. (3). Using \(U \), equation (17) can be rewritten as

\[U^{T} A U = \Lambda \quad (18) \]

where

\[\Lambda_{mn} = \lambda_{n} \delta_{mn} \quad (19) \]

is a diagonal matrix. Thus the matrix eigenvalue problem amounts to finding an orthogonal matrix, \(U \), or the associated orthogonal transformation, Eq. (18), which eliminates all the off-diagonal matrix elements.
GRAND STRATEGY

The grand strategy of matrix diagonalization is to nudge the matrix A towards diagonal form by a sequence of orthogonal transformations,

$$ A \rightarrow P_1^T A P_1 \rightarrow P_2^T P_1^T A P_1 P_2 \rightarrow \ldots, $$

so that its off-diagonal elements gradually disappear. At the end, the orthogonal matrix is

$$ U = P_1 P_2 \cdots. $$

ORTHOGONAL TRANSFORMATION ~ ROTATION: JACOBI TRANSFORMATION

As an illustration, let us consider a two-state system, for which the most general Hamiltonian matrix is

$$ H = \begin{bmatrix} \varepsilon_1 & \delta \\ \delta & \varepsilon_2 \end{bmatrix}. $$

(We define the indices such that $\varepsilon_1 < \varepsilon_2$, i.e., the first state is the lower-energy state.) We express first eigenvector of this Hamiltonian as

$$ |u\rangle = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \cos \theta |1\rangle + \sin \theta |2\rangle, $$

which is most general. (Because of the normalization condition, the any vector in the 2-dimensional vector space can be specified by one parameter.) Once we specify the first eigenvector, the second is readily determined from the orthonormality as

$$ |v\rangle = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}, $$

see the figure below. The rotation angle θ specifies the deviation of the first eigenvector $|u\rangle$ from $|1\rangle$.

The orthogonal matrix is then

$$ U = \begin{bmatrix} u & v \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. $$

To find the specific rotation angle θ, let us return to the original eigenvalue problem,

$$ \begin{bmatrix} \lambda - \varepsilon_1 & -\delta \\ -\delta & \lambda - \varepsilon_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. $$

The eigenvalues are obtained by solving the secular equation,
\[
\det(\lambda I - H) = \begin{vmatrix} \lambda - \epsilon_1 & -\delta \\ -\delta & \lambda - \epsilon_2 \end{vmatrix} = (\lambda - \epsilon_1)(\lambda - \epsilon_2) - \delta^2 = 0,
\]
and its two solutions are
\[
\lambda_{\pm} = \frac{\epsilon_1 + \epsilon_2 \pm \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\delta^2}}{2}.
\]
Now let us examine the lower eigenenergy \(\lambda_{\pm}\). By substituting the eigenvalue and the corresponding eigenvector, Eq. (22), into Eq. (24), we obtain
\[
\theta = \tan^{-1}\left(\frac{-\epsilon_1 + \epsilon_2 - \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\delta^2}}{2\delta}\right).
\]
For example, if the off-diagonal element \(\delta\) is small, we can expand Eq. (27) into its power series, the first term of which is (we have assumed \(\epsilon_1 < \epsilon_2\))
\[
\theta = \frac{\delta}{\epsilon_1 - \epsilon_2}.
\]

Jacobi Transformation

In Jacobi transformation, each orthogonal transformation \(P_i\) in Eq. (20) is the two-dimensional rotation applied to a pair of rows, \(i\) and \(j\), and the pair of columns of the same indices. One such rotation eliminates a pair — \((i, j)\) and \((j, i)\) — of off-diagonal elements. A sequence of two-dimensional rotations will eventually eliminate all the off-diagonal elements. (In fact, later rotations may partially restore off-diagonal elements eliminated earlier. Nevertheless, this procedure will converge, and the square sum of all the off-diagonal elements becomes smaller as we continue the procedure.)

HOUSEHOLDER TRANSFORMATIONS FOR TRIDIAGONALIZATION

Instead of eliminating a pair of off-diagonal elements at one time as in Jacobi transformation, Householder transformation eliminates an entire row but the first two elements at a time.

In Chapter 11 of *Numerical Recipes*, Householder transformations are used to reduce a real, symmetric matrix to a tridiagonal form, in which only the diagonal \((A_{ii})\), upper subdiagonal \((A_{i+1,i})\), and lower subdiagonal \((A_{i,i+1})\) elements may be nonzero. The function \texttt{tred2()} achieves this. The resulting tridiagonal matrix is then diagonalized (i.e., both subdiagonal elements are eliminated), using another sets of orthogonal transformations in function \texttt{tqli()}. The magical orthogonal matrix \(P\) is constructed from a vector in the \(N\)-dimensional vector space. First, let us prove a useful lemma.

(Lemma) Let \(v \in \mathbb{R}^N\) and
\[
P = I - \frac{2vv^T}{v^Tv},
\]
then \(P\) is symmetric and orthogonal, i.e.,
\[
P^TP = PP = I.
\]
First,\[P_{ij} = \delta_{ij} - 2v_i v_j \sum_{k=1}^{2} v_k^2, \] is symmetric with respect to the exchange of the indices \(i \) and \(j \). Next,\[
P^T P = \left(I - \frac{2vv^T}{v^Tv} \right) \left(I - \frac{2vv^T}{v^Tv} \right)
= I - \frac{4vv^T}{v^Tv} + \frac{4vv^T vv^T}{(v^Tv)^2} \quad \text{//}
= I - \frac{4vv^T}{v^Tv} + \frac{4vv^T}{v^Tv} = I
\]

Now, given an arbitrary vector \(x \) in the \(N \)-dimensional vector space, we can device an orthogonal matrix that eliminates all the elements but the first one when multiplied to \(x \).

(Theorem) For \(\forall x \in \mathbb{R}^N \), let\[
v = x \pm \| x \|_2 e_1
\] where\[
e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
\] and the vector 2-norm is defined as\[
\| x \|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{N} x_i^2}.
\] Then\[
P x = \left(I - \frac{2vv^T}{v^Tv} \right) x = \mp \| x \|_2 e_1,
\] i.e., the Householder matrix \(P \), when multiplied, eliminates all the elements of \(x \) but the first one.

Note that,\[
v^Tv = \left(x^T \pm \| x \|_2 e_1^T \right) \left(x \pm \| x \|_2 e_1 \right)
= \| x \|_2^2 \pm 2\| x \|_2 x_1 + \| x \|_2^2
= 2\| x \|_2^2 (\| x \|_2 \pm x_1)
\] Then
\[PX = x - \frac{2vv^T}{2\|x\|_2^2 (\|x\|_2 \pm x_1)}x \]
\[= x - \frac{(x \pm \|x\|_2 e_1)(x^T \pm \|x\|_2 e_1^T)x}{\|x\|_2^2 (\|x\|_2 \pm x_1)} \]

//
\[= x - \frac{(x \pm \|x\|_2 e_1)(\|x\|_2 \pm x_1)}{\|x\|_2 (\|x\|_2 \pm x_1)} \]
\[= x - x \mp \|x\|_2 e_1 = \mp \|x\|_2 e_1 \]

The Householder matrix can be used for tridiagonalization as follows: Let us decompose a real, symmetric matrix \(A \) as
\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1N} \\
 a_{21} & \ddots & & \vdots \\
 \vdots & & \ddots & \vdots \\
 a_{N1} & & & a_{NN}
\end{bmatrix} = \begin{bmatrix}
 a_{11} & A_{12} = A_{21}^T \\
 A_{21} & A_{22}
\end{bmatrix}.
\] (36)

where \(A_{21}, A_{12}, \) and \(A_{22} \) are \((N-1)\times1, 1\times(N-1), \) and \((N-1)\times(N-1)\) matrices, respectively. Now let
\[
v = (\in \mathbb{R}^{N-1}) = A_{21} + \text{sign}(a_{21})\|A_{21}\|_2 e_1.
\] (37)

(The sign has been chosen to minimize the cancellation error.) Then
\[
\overline{P}A_{21} = \left(I_{N-1} - \frac{2vv^T}{v^Tv} \right)A_{21} = -\text{sign}(a_{21})\|A_{21}\|_2 e_1 = k e_1.
\] (38)

Now
\[
PAP = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 \vdots & \ddots & & \vdots \\
 0 & & \ddots & \vdots \\
 0 & & & 1
\end{bmatrix}
\begin{bmatrix}
 a_{11} & A_{21}^T \\
 A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 \vdots & \ddots & & \vdots \\
 0 & & \ddots & \vdots \\
 0 & & & 1
\end{bmatrix}
\]
\[= \begin{bmatrix}
 a_{11} & \overline{P}A_{21} \\
 k & \overline{P}A_{22}
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 \vdots & \ddots & & \vdots \\
 0 & & \ddots & \vdots \\
 0 & & & 1
\end{bmatrix},
\] (39)

i.e., all the elements in the first row and first column but \(a_{11}, a_{12}, \) and \(a_{21} \) have been eliminated by this transformation. Next, a similar Householder transformation is applied to the first column and first row of the \((N-1)\times(N-1)\) submatrix \(\overline{P}A_{22} \overline{P} \), which eliminates all the elements in the second row and second column in the original \(N \times N \) matrix but \(a_{22}, a_{23}, \) and \(a_{32}, \) so on (see the figure below, in which white cells represent eliminated matrix elements).
After \((N-2)\) such transformations, all the off-diagonal elements but the diagonal and upper/lower sub-diagonal elements are eliminated.

DIAGONALIZATION OF A TRIDIAGONAL MATRIX—QR DECOMPOSITION

QR Decomposition

The diagonalization of the tridiagonal matrix obtained above can use QR decomposition (or similar QL decomposition). That is, any square matrix \(A\) can be decomposed into

\[
A = QR,
\]

where \(Q\) is an orthogonal matrix and \(R\) is an upper-triangular matrix, i.e., \(R_{ij} = 0\) for \(i > j\).

For example, this can be achieved by using a Householder transformation as follows. First, we decompose the \(N\times N\) matrix \(A\) into the first column \(A_1\) and the rest \(A_2\):

\[
A = \begin{bmatrix}
a_{11} \\
\vdots \\
a_{N1}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2
\end{bmatrix}.
\]

(41)

Let

\[
v \in \mathbb{R}^N = A_1 + \text{sign}(a_{11})\|A_1\|_2 e_1,
\]

then

\[
PA_1 = \left(I_N - \frac{2vv^T}{v^Tv} \right) A_1 = -\text{sign}(a_{11})\|A_1\|_2 e_1 = ke_1,
\]

(43)

and thus

\[
PA = \begin{bmatrix}
PA_1 & PA_2 \\
0 & \vdots & PA_2 \\
0 & \vdots & \vdots & \ddots & \vdots \\
0 & \vdots \\
0
\end{bmatrix}
\]

(44)

i.e., all the elements in the first column but one have been eliminated. Next, we can apply a similar elimination to \(A(2:N,2:N)\) submatrix to eliminate all the lower-triangular elements in the second column, see the figure below.

After \((N-1)\) transformation, the resulting matrix is upper-triangular, i.e.,
\[P_{N-1} \cdots P_2 P_1 A = R, \quad (45) \]

or

\[P_1^{-1} P_2^{-1} \cdots P_{N-1}^{-1} R = QR. \quad (46) \]

Orthogonal Transformation

Let Eq. (40) be the QR decomposition of matrix \(A \). Then, define another matrix by

\[A' = RQ. \quad (48) \]

Since \(R = Q^{-1}A = Q^T A \) from Eq. (40), Eq. (48) defines an orthogonal transformation,

\[A \rightarrow A' = Q^T AQ. \quad (49) \]

It can be proven that, if \(A \) is tridiagonal, then \(A' \) is also tridiagonal, i.e., the orthogonal transformation preserves the tridiagonality. The QR algorithm consists of successive applications of this orthogonal transformation.

(QR algorithm)

\[
\begin{align*}
1. & \quad Q_s R_s \leftarrow A_s \\
2. & \quad A_{s+1} \leftarrow R_s Q_s, \quad s = 1, 2, \ldots .
\end{align*}
\quad (50)
\]

The following theorems then guarantee that the eigenvalues and eigenvectors can be obtained by the QR algorithm.

(Theorem)

1. \(\lim_{s \to \infty} A_s \) is upper-triangular, and
2. The eigenvalues appear on its diagonal.

In Chapter 11 of *Numerical Recipes*, function \(\text{tqli()} \) uses QL algorithm, instead of the above QR algorithm, to achieve lower-triangularity, to minimize the cancellation error.