Numerical Integration

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

New toolbox:
1. Gaussian quadratures (orthogonal functions)
2. Newton’s method
Numerical Integration

- **Numerical integration** = weighted sum of function values

\[S = \int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n-1} w_k f(x_k) \]

- **Trapezoid quadrature**: Piecewise linear approximation

\[f(x) \approx f_k + (x - x_k)(f_{k+1} - f_k) / h \quad x \in [x_k, x_{k+1}] \]

Resulting area:

\[\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{k=0}^{n-1} (f_k + f_{k+1}) + O(h^2) \]
Simpson Rule

- Simpson quadrature: Piecewise quadratic approximation
- Lagrange interpolation: $f(x) \approx \frac{(x - x_k)(x - x_{k+1})}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})} f_{k-1} + \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})} f_k + \frac{(x - x_{k-1})(x - x_{k})}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)} f_{k+1}$

\[\int_a^b f(x) \, dx \approx \frac{h}{3} \sum_{l=0}^{n/2-1} (f_{2l} + 4f_{2l+1} + f_{2l+2}) + O(h^4) \]
Gaussian Quadratures

- **Idea of Gaussian quadrature**: Freedom to choose both weighting coefficients & the location of abscissas to evaluate the function.

- **Gaussian quadrature**: Chooses the weight & abscissas to make the integral exact for a class of integrands “polynomials times some known function \(W(x) \).”

 > Gauss-Legendre: \(W(x) = 1; -1 < x < 1 \)
 > Gauss-Chebyshev: \(W(x) = (1 - x^2)^{-1/2}; -1 < x < 1 \)

\[
\int_a^b W(x) f(x) dx = \sum_{k=1}^{n} w_k f(x_k)
\]

- **New toolbox**: (1) orthogonal functions (recursive generation via a generating function); (2) Newton method for root finding

Orthogonal Functions

- Gaussian quadratures are defined through orthogonal functions

- Orthogonal functions are often introduced as solutions to differential equations

- **Examples:** Legendre, Bessel, Laguerre, Hermite, Chebyshev, ...

- Operationally well-defined to compute the function values & derivatives

- Efficiently computable through recursive relations (more than elementary functions like sin(x), exp(x), ...)
Orthogonal Functions

- Scalar product:
 \[\langle f \mid g \rangle \equiv \int_{a}^{b} W(x) f(x) g(x) \, dx \]

- Orthonormal set of functions: Mutually orthogonal & normalized
 \[\langle p_m \mid p_n \rangle = \delta_{m,n} = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases} \]

- Recurrence relation to construct an orthonormal set:
 \[p_{-1}(x) \equiv 0 \]
 \[p_0(x) \equiv 1 \]
 \[p_{j+1}(x) = (x - a_j) p_j(x) - b_j p_{j-1}(x) \quad j = 0, 1, 2, \ldots \]

\[a_j = \frac{\langle xp_j \mid p_j \rangle}{\langle p_j \mid p_j \rangle} \quad j = 0, 1, \ldots \]

\[b_j = \frac{\langle p_j \mid p_{j-1} \rangle}{\langle p_{j-1} \mid p_{j-1} \rangle} \quad j = 1, 2, \ldots \]

(Theorem) \(p_j(x) \) has exactly \(j \) distinct roots in \((a,b)\), & the roots interleave the \(j-1 \) roots of \(p_{j-1}(x) \)
Legendre Polynomial

\[W(x) = 1 \quad -1 < x < 1 \]

- **Recursive function evaluation**
 \[(j + 1)P_{j+1} = (2j + 1)xP_j - jP_{j-1} \quad P_0 = 1 \quad P_1 = x \]

- **Generating function**: The recurrence may be obtained through the Taylor expansion of the following function with respect to \(t \)
 \[g(t,x) = \frac{1}{\sqrt{1 - 2xt + t^2}} \equiv \sum_{j=0}^{\infty} P_j(x)t^j \]
 (Hint) Differentiate both sides by \(t \) & compare the coefficients of \(t^j \)

- **Function derivative**: A recurrence derived by differentiating \(g \) by \(x \)
 \[(x^2 - 1)P'_j = jxP_j - jP_{j-1} \]
Gauss-Legendre Quadrature

\[\int_{-1}^{1} W(x)f(x)dx = \sum_{k=1}^{n} w_k f(x_k) \]

- **Roots,** \(x_k\)
 \[P_n(x_k) = 0 \quad k = 1, \ldots, n \]

- **Weights,** \(w_k\): To reproduce some integrals exactly (linear equation)
 \[\int_{-1}^{1} P_0(x)P_n(x)dx = \frac{2}{2n+1} \delta_{0,n} = \sum_{k=1}^{n} w_k P_n(x_k) \]

 or
 \[w_k = \frac{2}{nP_{n-1}(x_k)P'_n(x_k)} = \frac{2}{(1-x_k^2)[P_n'(x_k)]^2} \]
Newton’s Method for Root Finding

- **Problem:** Find a root of a function
 \[P_n(x) = 0 \]

- **Newton iteration:** Successive linear approximation of the function
 1. Start from an initial guess, \(x_0 \), of the root
 2. Given the \(k \)-th guess, \(x_k \), obtain a refined guess, \(x_{k+1} \), from the linear fit:
 \[P_n(x) \approx P_n'(x_k)(x - x_k) + P_n(x_k) = 0 \]
 \[x_{k+1} = x_k - \frac{P_n(x_k)}{P_n'(x_k)} \]
Gauss-Legendre Program

- Given the lower & upper limits \((x_1 \& x_2)\) of integration & \(n\), returns the abscessas & weights of the Gauss-Legendre \(n\)-point quadrature in \(x[1:n] \& w[1:n]\).

```c
void gauleg(float x1,float x2,float x[],float w[],int n) {
    int m,j,i;
    double z1,z,xm,xl,pp,p3,p2,p1;
    m=(n+1)/2; // Find only half the roots because of symmetry
    xm=0.5*(x2+x1);
    xl=0.5*(x2-x1);
    for (i=1;i<=m;i++) {
        z=cos(3.141592654*(i-0.25)/(n+0.5));
        do {
            p1=1.0; p2=0.0;
            for (j=1; j<=n; j++) { // Recurrence relation
                p3=p2; p2=p1;
                p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;
            }
            pp=n*(z*p1-p2)/(z*z-1.0); // Derivative
            z1=z;
            z=z1-p1/pp; // Newton’s method
        } while (fabs(z-z1) > EPS); // EPS=3.0e-11
        x[i]=xm-xl*z;
        x[n+1-i]=xm+xl*z;
        w[i]=2.0*xl/((1.0-z*z)*pp*pp);
        w[n+1-i]=w[i];
    }
}
```
How to Use the Gauss-Legendre Program

$ cc –o gauleg-driver gauleg-driver.c gauleg.c -lm

//gauleg-driver.c
#include <stdio.h>
#include <math.h>

double *dvector(int, int);
void gauleg(double, double, double *, double *, int);

int main() {
 double *x,*w;
 double x1= -1.0,x2=1.0,sum;
 int N,i;
 printf("Input the number of quadrature points\n");
 scanf("%d",&N);
 x = dvector(1,N);
 w = dvector(1,N);
 gauleg(x1,x2,x,w,N);
 sum=0.0;
 for (i=1; i<=N; i++)
 sum += w[i]*2.0/(1.0 + x[i]*x[i]);
 printf("Integration = %f\n", sum);
}

\[\pi = \int_{-1}^{1} dx \frac{2}{x^2 + 1} \approx \sum_{k=1}^{N} w_k \frac{2}{x_k^2 + 1}\]
Recursive Function Evaluation

• Legendre function

```c
p1=1.0; p2=0.0;
for (j=1;j<=n;j++) { // Recurrence relation
    p3=p2;
    p2=p1;
    p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;
}
pp=n*(z*p1-p2)/(z*z-1.0); // Derivative
```

\[
\begin{align*}
P_{-1} &= 0 \\
P_0 &= 1 \\
jp &= (2j - 1)zP_{j-1} - (j - 1)P_{j-2}
\end{align*}
\]

\[
jP_j = (2j - 1)zP_{j-1} - (j - 1)P_{j-2}
\]

• Compare it with a (low-accuracy) square-root function

```c
#define C0 0.188030699
#define C1 1.48359853
#define C2 (-1.0979059)
#define C3 0.430357353

fs = C0+x*(C1+x*(C2+x*C3));
sr = fs+0.5*(x/fs-fs);
```