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We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates
(1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular
dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and
polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field
(EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable
hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based
on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF
(F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On
1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56
billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953.
Through the use of these algorithms, multimillion atom MD simulations have been performed to study the
oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated
as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the
microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen
environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble,
an amorphous oxide layer of a thickness of∼40 Å is formed after 466 ps, in good agreement with experiments.
Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline
silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation
mechanisms in brittle nanophase materials, due to coexistence of brittle grains and soft amorphous-like grain
boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain
discrete deformation at a critical indentation depth.

1. Introduction

Materials by design efforts have thus far focused on control-
ling structures at diverse length scalessatoms, defects, fibers,
interfaces, grains, pores, etc. Because of the inherent complexity
of such multiscale materials phenomena, atomistic simulations
are expected to play an important role in the design of materials
such as metals, semiconductors, ceramics, and glasses. In recent
years we have witnessed rapid progress in large-scale atomistic
simulations, highly efficient algorithms for massively parallel
machines, and immersive and interactive virtual environments
for analyzing and controlling simulations in real time. As a result
of these advances, simulation efforts are being directed toward
reliably predicting properties of materials in advance of fabrica-
tion. Thus, materials simulations are capable of complementing
and guiding experimental search for new and novel materials.

Computer simulation is the third mode of scientific research
that bridges the gap between analytical theory and laboratory
experiment. Experiments search for patterns in complex natural
phenomena. Theories encode the discovered patterns into
mathematical equations that provide predictive laws for the
behavior of nature. Computer simulations solve these equations

numerically in their full complexity, where analytical solutions
are prohibitive due to a large number of degrees of freedom,
nonlinearity, or lack of symmetry. In computer simulations,
environments can be controlled with any desired accuracy and
extreme conditions are accessible far beyond the scope of
laboratory experiments.

Advanced materials and devices with nanometer grain/feature
sizes are being developed to achieve higher strength and
toughness in ceramic materials and greater speeds in semicon-
ducting electronic and photonic devices. Below the length scale
of 100 nm, however, continuum description of materials and
devices must be supplemented by atomistic descriptions.1,2

Current state-of-the-art atomistic simulations involve 1 million
to 1 billion atoms.3 Finally, the impact of large-scale nanosystem
simulations cannot be fully realized without major breakthroughs
in scientific visualization. The current practice of sequentially
processing visualization data is highly ineffective for large-scale
applications that produce terabytes of data. The only viable
solution is to integrate visualization into simulation, so that they
are both performed concurrently on multiple parallel machines
and then examine the results in real time in three-dimensional
immersive and interactive virtual environments.4

This paper describes our efforts to combine scalable and
portable simulation algorithms to enable very large-scale

† Part of the special issue “Michael L. Klein Festschrift”.
* Author to whom correspondence should be addressed. E-mail:

priyav@usc.edu

3727J. Phys. Chem. B2006,110,3727-3733

10.1021/jp0556153 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/24/2006



molecular dynamics (MD) simulations. Scalable multiresolution
algorithms that enable these large-scale simulations are described
in the first part of this paper. In the second part, we discuss the
MD simulations of various nanostructured materials and pro-
cesses of great scientific and technological importance.

2. Hierarchical Simulation Framework

Simulations of material properties and processes require
multiple size domains and a different computational approach
for each of these domains. In fracture simulations, for example,
a quantum mechanical (QM) description is required at the crack
tip to take into account the breaking of chemical bonds. One
scale up from the electronic level is the atomistic region where
understanding of high-rate deformation mechanisms requires
atomistic simulations over a region of about 100 nm around
the crack tip for about a microsecond. In the vicinity of the
crack tip, chemical reactions cause bond breaking and new bond
formation over a region of about 10 nm (∼105 atoms).
Surrounding this reactive zone is a region of fluctuating atomic
charges and defects, which extends to about 50 nm and contains
about 107 atoms. Outside this region the material is highly
deformed and still requires atomistic description up to about
100-200 nm (108-109 atoms). Beyond these length scales,
atomistically informed continuum modeling is required.

In simulation studies of fracture, QM methods could be
employed around the crack tip where bonds break and non-
equilibrium conditions prevail, Figure 1. This region would
contain about 103 atoms. Atomistic regions near the tip and
across interfaces would be studied with a reactive force field
(ReaxFF) that Goddard and co-workers have developed on the
basis of first-principles calculations to interface QM and
effective force field (EFF) methods (Figure 1).5 ReaxFF is
several orders of magnitude faster than QM methods and can
handle much larger systems (105 atoms).

In strained regions that do not have active reactions, we use
MD based on an EFF with fixed atomic charges. Such an
approach is much faster than ReaxFF and can handle up to 109

atoms. For example, we have performed a 1.5 billion atom EFF-
MD simulation of dynamic fracture in a nanocomposite consist-
ing of SiC fibers in a Si3N4 matrix6 and a 115 million atom
simulation of crack propagation in amorphous silica.7,8 Our EFF
potentials have been extensively validated against experimental
data and QM calculations on cohesive energies, elastic constants,
melting temperatures, high-pressure structural transformations,
amorphous structures, and fracture energies.

To facilitate smooth transition between ReaxFF and EFF, it
is necessary to introduce another computational approach
between these methods. Here a nonreactive force field employs

geometry-dependent charges, based on the charge equilibration
(QEq) method.9-12

We have designed a framework not only to integrate QM
and ReaxFF/QEq/EFF-MD methods automatically but also to
allow a coarse-grained simulation to dynamically invoke
multiple fine-grained simulations.13 This framework consists of
(1) a hierarchical division of the physical system into subsystems
of increasing quality-of-solution (QoSn) requirements,S0 ⊃ S1

⊃ ... ⊃ Sn, and (2) a suite of simulation services,MR (R ) 0,
1, ...,n), of ascending order of accuracy (e.g., EFF< QEq <
ReaxFF < QM). We have used the additive hybridization
framework to perform (1) QM/EFF-MD simulations of crack
initiation in Si in the presence of water molecules,14 (2) EFF-
MD/finite element (FE) simulations of stress distributions at
Si/amorphous Si3N4 interfaces,15 and (3) QM/EFF-MD/FE
simulations of oxidation in Si.13

3. Parallel Linear-Scaling Atomistic Simulation
Algorithms

To perform the large-scale hierarchical simulations described
in the previous section, it is essential that each simulation
method covers sufficiently wide length scales, and this in turn
requires scalable simulation algorithms on massively parallel
computers. We have developed a unified algorithmic framework
to design linear-scaling algorithms for broad scientific and
engineering problems, based on data locality principles. In the
embedded divide-and-conquer (EDC) algorithms, spatially
localized subproblems are solved in a global embedding field,
which is efficiently computed with tree-based algorithms (Figure
2). Examples of the embedding field are the electrostatic field
in molecular dynamics (MD) simulations, the self-consistent
Kohn-Sham potential in the density functional theory (DFT),16

and a coarser simulation in a multiscale simulaion.
Specifically, we have developed a suite of linear-scaling MD

simulation algorithms for materials simulations, in which
interatomic forces are computed with increasing accuracy and
complexity. The linear-scaling algorithms encompass a wide
spectrum of physical reality: (1) classical MD based on a many-
body interatomic potential model, which involves the formally
O(N2) N-body problem, 2) environment-dependent, ReaxFF-
MD, which involves theO(N3) variableN-charge problem, and
3) QM calculation based on the DFT, to provide approximate
solutions to the exponentially complex quantumN-body prob-
lem.

We have developed chemically reactiveO(N) MD simulation
algorithms, on the basis of our space-time multiresolution

Figure 1. Hierarchical molecular dynamics simulation approach to
fracture. Quantum mechanical and ReaxFF-MD computations are
performed to study environmental effects on the crack tip. ReaxFF-
MD is matched to QEq-MD and to EFF-MD in the process zone.
Atomistically informed continuum models are compared with engineer-
ing fracture data.

Figure 2. Schematic of an embedded divide-and-conquer (EDC)
algorithmic framework. (Left) The physical space is subdivided into
spatially localized cells, with local atoms constituting subproblems
(bottom), which are embedded in a global field (shaded) solved with
a tree-based algorithm. (Right) To solve the subproblem in domain
ΩR in the EDC-DFT algorithm, coarse multigrids (gray) are used to
accelerate iterative solutions on the original real-space grid (corre-
sponding to the grid refinement level,l ) 3). The bottom panel shows
that fine grids are adaptively generated near the atoms (spheres) to
accurately operate the ionic pseudopotentials on the electronic wave
functions.
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molecular dynamics (MRMD) algorithm.3 In the MD approach,
one obtains the phase-space trajectories of the system (positions
and velocities of all atoms at all times). Atomic force laws for
describing how atoms interact with each other are mathemati-
cally encoded in the interatomic potential energy,EMD(rN),
which is a function of the positions of allN atoms,rN ) {r1,
r2, ...,rN}, in the system. In our many-body interatomic potential
scheme,EMD(rN) is expressed as an analytic function that
depends on relative positions of atomic pairs and triplets. Time
evolution of rN is governed by a set of coupled ordinary
differential equations. For interatomic potentials with finite
ranges, the computational cost is madeO(N) using a linked-list
cell approach. For the long-range electrostatic interaction, we
use the fast multipole method (FMM) to reduce theO(N2)
computational complexity of theN-body problem toO(N).17-19

In the FMM, the physical system is recursively divided into
subsystems to form an octree data structure, and the electrostatic
field is computed recursively on the octree withO(N) operations,
while maintaining the spatial locality at each recursion level.
Our scalable parallel implementation of the FMM has a unique
feature to compute atomistic stress tensor components, based
on a novel complex charge method.19 The MRMD algorithm
also utilizes temporal locality through multiple time stepping
(MTS), which uses different force-update schedules for different
force components.18,20 Specifically, forces from the nearest-
neighbor atoms are computed at every MD step, whereas forces
from farther atoms are updated less frequently.

For parallelization of MD simulations, we use spatial
decomposition.3 The total volume of the system is divided into
P subsystems of equal volume, and each subsystem is assigned
to a node in an array ofP compute nodes. To calculate the
force on an atom in a subsystem, the coordinates of the atoms
in the boundaries of neighbor subsystems are “cached” from
the corresponding nodes. After updating the atomic positions
due to a time-stepping procedure, some atoms may have moved
out of its subsystem. These atoms are “migrated” to the proper
neighbor nodes. With the spatial decomposition, the computation
scales asN/P, while communication scales in proportion to (N/
P)2/3 for anN-atom system. Tree-based algorithms such as the
FMM incur an O(log P) overhead, which is negligible for
coarse-grained (N/P > 104) applications.

Physical realism of MD simulations is greatly enhanced by
incorporating variable atomic charges and reactive bond orders,
which dynamically adapt to the local environment. However,
the increased realism of this ReaxFF-MD5 is accompanied by
increased computational complexity,O(N3), for solving a dense
linear system of equations to determine atomic charges at every
MD step, i.e., the variableN-charge problem. We have
developed a scalable fast reactive force-field (F-ReaxFF) MD
algorithm, which reduces the complexity toO(N) by combining
the FMM based on spatial locality and an iterative minimization
approach to utilize the temporal locality of the solutions. To
further accelerate the convergence, we use a multilevel precon-
ditioned conjugate-gradient (MPCG) method, by splitting the
Coulomb-interaction matrix into short- and long-range compo-
nents and using the sparse short-range matrix as a precondi-
tioner.21 The extensive use of the sparse preconditioner enhances
the data locality and thereby improves the parallel efficiency.

The chemical bond order,Bij, is an attribute of an atomic
pair, (i, j), and changes dynamically depending on the local
environment. In ReaxFF, the interatomic potential energies
between atomic pairs, triplets, and quartets depend on the bond
orders of all constituent atomic pairs. Force calculations in
ReaxFF MD thus include up to atomic 4-tuples explicitly, and

require information on 6-tuples implicitly due to chain-rule
differentiations through the bond orders. To efficiently handle
the resulting multiple interaction ranges, the F-ReaxFF employs
a multilayer cellular decomposition (MCD) scheme for caching
atomicn-tuple (n ) 2-6) information.

An atom consists of a nucleus and surrounding electrons, and
quantum mechanics explicitly treats the electronic degrees of
freedom. The DFT reduces the exponentially complex quantum
N-body problem to a self-consistent matrix eigenvalue problem,
which can be solved withO(M3) operations (M is the number
of independent electronic wave functions and is on the order
of N).16 The DFT can be formulated as a minimization of the
energy functional,EQM(rN, ψM), with respect to electronic wave
functions, ψM(r ) ) {ψ1(r ), ψ2(r ), ..., ψM(r )}, subject to
orthonormality constraints.

For scalable quantum-mechanical calculations, linear-scaling
DFT algorithms are essential.22 We have previously developed
anO(M) DFT algorithm based on unconstrained minimization
of a modified energy functional and a localized-basis ap-
proximation.23 Recently, we have designed a newO(M) DFT
algorithm with considerably more robust convergence properties,
controlled errors, and energy conservation during MD simula-
tions.24 The divide-and-conquer DFT algorithm represents the
physical system as a union of overlapping spatial domains,Ω
) ∪R ΩR (Figure 2),25 and physical properties are computed as
linear combinations of domain properties. For example, the
electronic density is expressed asF(r ) ) ΣR pR(r ) Σn fnR|ψn

R-
(r )|2, wherepR(r ) is a support function that vanishes outside
the Rth domain ΩR, and fnR and ψn

R(r ) are the occupation
number and the wave function of thenth electronic state (i.e.,
Kohn-Sham orbital) inΩR. The domains are embedded in a
global Kohn-Sham potential, which is a functional ofF(r ) and
is determined self-consistently with{fnR, ψn

R(r )}. We use the
multigrid method to compute the global potential.

The DFT calculation in each domain is performed using a
real-space approach,26 in which electronic wave functions are
numerically represented on grid points, Figure 2. The real-space
grid is augmented with coarser multigrids to accelerate the
convergence of iterative solutions.27,28Furthermore, a finer grid
is adaptively generated near every atom, to accurately operate
ionic pseudopotentials to describe electron-ion interactions. We
include electron-ion interactions using norm-conserving pseudo-
potentials29 and the exchange-correlation energy in a general-
ized gradient approximation.30

The divide-and-conquer DFT algorithm on the hierarchical
real-space grids is implemented on parallel computers based
on spatial decomposition. Each compute node contains one or
more domains of the EDC algorithm. For each domain, its
electronic structure is computed independently, with little
information needed from other compute nodes (only the global
density but not individual wave functions is communicated).
The resulting large computation/communication ratio makes this
approach highly scalable on parallel computers.

The convergence of the new algorithm has been verified for
nontrivial problems such as amorphous CdSe and liquid Rb.24

The divide-and-conquer DFT calculation for alumina (with the
domain size 9.0× 7.8 × 8.2 au3 and the buffer lengths 4.5,
3.9, and 4.1 au) reproduces anO(N3) DFT energy within 0.001
au per atom. The EDC-DFT MD algorithm has also overcome
the energy drift problem, which plagues mostO(N) DFT-based
MD algorithms.

We have also developed a framework to map the aboveO(N)
algorithms onto massively parallel computers with deep memory
hierarchies. This framework maximally exposes data locality
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and exploits parallelism at multiple decomposition levels. The
parallelization framework includes a topology-preserving com-
putational spatial decomposition scheme to minimize latency
through structured message passing and load imbalance/com-
munication costs through a novel wavelet-based load-balancing
scheme.31

The three parallel MD algorithmssMRMD, F-ReaxFF, and
divide-and-conquer DFTsare portable and have been run on
various platforms, including Intel Itanium2, Intel Xeon, AMD
Opteron, and IBM Power4 based parallel computers. For
example, scalability tests of the three parallel algorithms have
been performed on the 10 240-processor Columbia supercom-
puter at the NASA Ames Research Center, Figure 3. The 64-
bit Itanium2 architecture operates at 1.5GHz and is capable of
issuing two multiply-add operations per cycle for a peak
performance of 6 Gflop/s. Columbia is configured as a cluster
of 20 Altix boxes, each with 512 processors and approximately
1 TB of global shared-access memory.

Major design parameters for MD simulations of materials
include the number of atoms in the simulated system and the
methods to compute interatomic forces (classically in MRMD,
semiempirically in F-ReaxFF MD, or quantum-mechanically in
DFT MD). Figure 3 shows a design-space diagram for classical
and quantum-mechanical MD simulations on 1920 Itanium2
processors of Columbia. The largest benchmark tests in this
study include 18 925 056 000 atom MRMD, 557 383 680 atom
F-ReaxFF, and 1 382 400 atom (121 385 779 200 electronic
degrees of freedom) divide-and-conquer DFT calculations. The
figure demonstrates perfect linear scaling for all the three
algorithms, with prefactors spanning five orders of magnitude.
The only exception is the F-ReaxFF algorithm below 100 million
atoms, where the execution time scales even sublinearly. This
is due to the decreasing communication overhead, which scales
asO((N/P)-1/3). Our algorithmic and parallel-computing frame-
works expose maximal data locality, and as a result the parallel
efficiency on 1920 processors is as high as 0.953.

4. Oxidation of an Aluminum Nanoparticle

Oxidation plays a critical role in the performance and
durability of various nanosystems. Oxidation of metallic nano-
particles offers an interesting possibility of synthesizing nano-

composites with both metallic and ceramic properties. We have
performed the first successful MD simulation of oxidation of
an Al nanoparticle (diameter 200 Å).11,12 The MD simulations
are based on the interaction scheme developed by Streitz and
Mintmire, which can successfully describe a wide range of
physical properties of both metallic and ceramic systems.10 This
scheme is capable of treating bond formation and bond breakage
and changes in charge transfer as the atoms move and their local
environments are altered. The QEq-MD simulations are per-
formed in both microcanonical and canonical ensembles.

In the microcanonical simulation, energy released from Al-O
bond formation is rapidly transported into the nanocluster
resulting in disordering of the Al nanocrystal and outward
expansion of the oxide region (Figure 4). The thickness of the
oxide region increases linearly with time and does not saturate.
By 50 ps the thickness and temperature of the oxide region are
35 Å and 2500 K, respectively. Subsequently, numerous small
Al xOy fragments are ejected from the nanocluster surface,
indicating that the nanocluster is exploding. This behavior under
closed conditions has also been observed experimentally.

The canonical simulations provide detailed picture of the rapid
evolution and culmination of the surface oxide thickness, local
stresses, and atomic diffusivities. In the first 5 ps, oxygen
molecules dissociate and the oxygen atoms first diffuse into
octahedral and subsequently into tetrahedral sites in the Al
nanoparticle. In the next 20 ps, as the oxygen atoms diffuse
radially into and the Al atoms diffuse radially out of the
nanoparticle, the fraction of 6-fold coordinated oxygen atoms
drops dramatically. Concurrently, there is a significant increase
in the number of O atoms, forming clusters of corner-sharing
and edge-sharing OAl4 tetrahedra. Between 30 and 35 ps,
clusters of OAl4 coalesce to form a neutral, percolating
tetrahedral network that impedes further intrusion of oxygen
atoms into and of Al atoms out of the nanoparticle. At 50 ps
the diffusivities of aluminum and oxygen are 1.4× 10-4 and
1.1× 10-4 cm2/s, respectively. The local pressure after 100 ps
of simulation time in Figure 5 shows that the oxide layer is
predominantly tensile, which may have a significant implication
for the mechanical stability of a passivated Al nanoparticle. The
electrostatic and nonelectrostatic contributions to the local

Figure 3. Benchmark tests of reactive and nonreactive MD simulations
on 1920 Itanium2 processors of Columbia. The figure shows the total
execution time per MD step as a function of the number of atoms for
three linear-scaling algorithms: quantum-mechanical MD based on the
divide-and-conquer density functional theory (circles); fast reactive
force-field MD (squares); and space-time multiresolution MD (tri-
angles). Lines show idealO(N) scaling.

Figure 4. Temperature of atoms during the microcanonical MD
simulation of an Al nanoparticle in an oxygen environment. The larger
spheres correspond to oxygen, and smaller spheres to aluminum; color
represents the temperature
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pressure in the nanocluster are also shown in Figure 5, and they
indicate that the attractive electrostatic interaction between Al
and O ions is responsible for the tension in the oxide layer. A
stable oxide scale formed at the end of our simulation is shown
in Figure 5. Structural analysis reveals a 40-Å-thick amorphous
oxide scale on the Al nanoparticle. The thickness and structure
of the oxide scale are in accordance with experimental results.32

The MD simulations provide a detailed picture of the rapid
evolution and culmination of the surface oxide thickness, local
stresses, and atomic diffusivities. Clusters of OAl4 coalesce to
form a neutral, percolating tetrahedral network that impedes
further intrusion of oxygen atoms into and of Al atoms out of
the nanoparticle.

5. Nanoindentation on Ceramics

Nanoindentation testing is a unique local probe of mechanical
properties of materials and used extensively to assess the
reliability and durability of structural components. The impor-
tance of atomistic-level understanding of the nanoindentation
process is widely recognized.

We have performed multimillion atom MD simulations of
nanoindentation in crystalline and amorphous silicon nitride,
using a diamond-shaped indenter, Figure 6.33,34The simulations
reveal local amorphization under the indenter. Nanocracks under
the indenter corners or material pileup along the indenter edges
tends to arrest amorphization. The calculated value of hardness
for crystalline Si3N4 is in reasonable agreement with experi-
mental results. The predicted hardness value of amorphous Si3N4

was later confirmed by nanoindentation experiments.35

We have also performed indentation simulations of 3C
crystalline,36,37 amorphous,38 and nanocrystalline39 silicon car-
bide, using a square-based indenter. The load-displacement
response of 3C crystal shows an elastic shoulder followed by a
plastic regime consisting of a series of load drops, Figure 7a.
Analyses of bond angles, local pressure and shear stress, and
shortest-path rings show that these drops are related to disloca-
tion activities under the indenter. We show that amorphization
is driven by coalescence of dislocation loops and that there is
a strong correlation between load-displacement response and
ring distribution.

The load-displacement curve of amorphous SiC also exhibits
a series of load drops, reflecting the short-range topological order
similar to crystalline 3C-SiC, Figure 7b. In contrast to 3C-
SiC, however, the load drops are irregularly spaced and less
pronounced. The damage is spatially more extended than in 3C-
SiC, and it exhibits long-range oscillations consistent with the
indenter size. Hardness is∼60% lower than in 3C-SiC and is
in agreement with experiment. The onset of plastic deformation
occurs at depth∼75% lower than in 3C-SiC.

The great interest in nanostructured ceramics originates from
unique mechanical properties observed or expected in these
materials. Examples include very high hardness as well as high
fracture toughness and superplastic behavior in normally brittle
ceramics. Silicon carbide is of particular interest due to its
potential technological applications in high-temperature struc-
tural and electronic components. Recent experiments of nanoin-
dentation of nanocrystalline SiC (n-SiC) films with grain sizes
of 5-20 nm have shown “superhardness”, i.e., hardness largely
exceeding that of a bulk crystalline SiC (3C-SiC).40 The
experimental hardness was shown to be sensitive to the grain
size and the fraction of the amorphous giga byte (GB) phase;
however their effects on mechanical responses at the atomistic
level are largely unknown.

Figure 5. (a) Snapshot of the Al nanocluster after 0.5 ns of canonical MD simulation time. (A quarter of the system is cut out to show the
aluminum/aluminum oxide interface.) The larger spheres correspond to oxygen, and smaller spheres to aluminum; color represents the charge on
an atom. (b) Local pressure in the nanocluster after 100 ps of simulation time. (c) Electrostatic and nonelectrostatic contributions to the local
pressure in Figure 5b.

Figure 6. (a) Half-slice view of pressure in a silicon nitride sample
during nanoindentation. (b) Atomic view showing amorphization under
the indentor and material pileup at the edges of the indentor. Red and
yellow are silicon and nitrogen atoms, respectively. These figures
demonstrate the relationship between residual stresses and atomistic-
level amorphization phenomena.
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The indentation simulations of n-SiC consisted of a 625×
625 × 625 Å3 n-SiC substrate, with randomly oriented grains
of an average diameter of 8 nm, containing 18.7 million atoms,
with a density of 2.97 g/cm3 at a temperature 300 K.39 The
resultingP-h curve is shown in Figure 7c (solid line), together
with two unloading curves (dashed lines). TheP-h response
exhibits four characteristic regimes. Regime 1 is entirely elastic
and ends ath ) 7.5 Å. Regime 2 extends up to the crossover
depth hCR ≈ 14.5 Å and is characterized by a very small
hysteresis during unloading as compared to a much more
pronounced plastic yield athCR. Because up tohCR the
amorphous “cementlike” GBs hold the grains together, Regimes
1 and 2 are characterized by cooperative continuous intergranu-
lar response. Regime 3 starts when amorphous GBs yield
plastically athCR ≈ 14.5 Å, and henceforth grains are effectively
decoupled from one another. The crystalline phase within the
grains does not yield until the onset of regime 4 ath ) 18.5 Å.
Discrete plastic events, such as a dislocation glide, take place
within the grains in close proximity to the indenter and are
reflected in the rougher character of theP-h curve. Similar
periodic load drops have been observed for the nanoindentation
in bulk 3C-SiC, Figure 7a. In the case of n-SiC, the load drops
are much less pronounced than in 3C-SiC, because the
calculated load is averaged over a few grains covered by the
indenter and the discrete events in a grain are decoupled from
those in the neighboring grains. Our estimate of n-SiC hardness
(defined as maximum load divided by the cross-sectional area
of the indenter) of 39 GPa is in excellent agreement with the
experimental value of “superhardness” of 30-50 GPa for grain
sizes of 5-20 nm.40

Essential ingredients of predictive MD simulations are reliable
interatomic potentials. For example, we have developed an
interatomic potential for SiC and validated it by comparing a
number of physical quantities with experimental data. The
potential parameters are chosen to reproduce the lattice constant,
elastic constants, and cohesive energy of 3C-SiC crystal. Good
agreements between MD and experimental (or DFT) results are
obtained for (1) high-pressure structural transformation in
crystalline SiC including both forward and reverse transforma-
tions,41 (2) the phonon density of states of crystalline 3C-SiC,
(3) the sintering temperature of nanophase SiC,42 (4) amorphous
structure, (5) the unstable stacking fault energy for the (111)
glide plane in the [101h] direction,43 and (6) anisotropic fracture
toughness values of 3C-SiC.43

For the 3C-to-rocksalt structural transformation of SiC, we
have proposed a new transition mechanism based on MD
simulations,41 which was later confirmed by DFT calculations.44

We have also investigated the structure and mechanical behavior
of n-SiC by a joint large-scale MD/neutron-scattering experiment
study.42 In both experiment and simulation, the onset of sintering

is around 1500 K. The effect of consolidation on mechanical
properties is also investigated with the MD approach. The results
show a power-law dependence of elastic moduli on the density
with an exponent of 3.4( 0.1. Details of the interatomic
potential for SiC are published elsewhere.45

6. Discussion

Current multi-teraflop parallel supercomputers (operating
trillions of floating-point operations per second) enable large-
scale MD simulations involving up to a billion atoms. Petaflop
computers (operating 1015 floating-point operations per second)
anticipated to be built in the next 5-10 years are expected to
enable trillion atom MD simulations.

In the same time frame, metacomputing on a grid of
geographically distributed supercomputers, mass storage, and
a virtual environment connected via high-speed networks will
revolutionize computational research by enabling (1) very large-
scale computations that are beyond the power of a single
supercomputer and (2) collaborative, hybrid computations that
integrate distributed, multiple expertise. A multidisciplinary
application that will soon require grid-level computing is
emerging at the forefront of computational science and engi-
neering. We have recently developed such a multiscale simula-
tion approach that seamlessly combines continuum mechanics
based on the FE method, MD simulations to describe atomistic
processes, and QM calculations based on the DFT to handle
breakage and formation of atomic bonds.

These emerging new computer architectures, together with
further developments in scalable simulation algorithms and
parallel-computing frameworks, will be critical for the advance-
ment of modeling and simulation research. Some of the most
exciting and challenging opportunities in simulation research
lie at the nano-bio interface.
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