MAterials Genome Innovation for Computational Software

Software & Data Sharing

Priya Vasishta-PI, Malancha Gupta, Rajiv K. Kalia, Aiichiro Nakano, Oleg Prezhdo University of Southern California
Uwe Bergmann and David Fritz Linac Coherent Light Source, SLAC
William A. Goddard, III California Institute of Technology
Kristin A. Persson Lawrence Berkeley National Laboratory
David J. Singh University of Missouri
Pulickel M. Ajayan Rice University
Software Distribution & Community Code Development

- **Software distribution**: Open-source software for computational synthesis & diagnosis will be distributed to the community on Github.
- **Community code development**: Workshops will be organized to train users & interface with the scientific community of software developers.
MAGICS Software

Singh group
• Thermal transport plug-in

Prezhdo group
• Nonadiabatic quantum molecular dynamics (NAQMD) plug-ins
 > Surface hopping with decoherence
 > Multi-electron processes

Goddard group
• ReaxPQ
• aARRDyn

Vashishta, Kalia, Nakano
• Scalable molecular-dynamics (MD) engines: DCR-QMD, XRMD
• Computational synthesis (exfoliation & iCVD) plug-ins

DCR: Divide-conquer-recombine
QMD: Quantum molecular dynamics
XRMD: Extended Lagrangian reactive molecular dynamics
iCVD: Initiated chemical vapor deposition
MAGICS Data

• Disseminate simulation & experimental data produced by the Center through the LBNL Materials Project & USC Center for High Performance Computing

• Devote apps on the Materials Project for data-mining aggregate data & searching for optimal synthesis conditions, given a target material

• Employ the Materials API to encourage external collaborators to independently extend the analyses & make the results available to the community